Advertisement

The European Physical Journal E

, Volume 16, Issue 1, pp 77–80 | Cite as

Non-equilibrium behavior of sticky colloidal particles: beads, clusters and gels

  • H. Sedgwick
  • K. Kroy
  • A. Salonen
  • M. B. Robertson
  • S. U. Egelhaaf
  • W. C.K. PoonEmail author
Regular Articles

Abstract.

To understand the non-equilibrium behavior of colloidal particles with short-range attraction, we studied salt-induced aggregation of lysozyme. Optical microscopy revealed four regimes: bicontinuous texture, ‘beads’, large aggregates, and transient gelation. The interaction of a metastable liquid-liquid binodal and an ergodic to non-ergodic transition boundary inside the equilibrium crystallization region can explain our findings.

Keywords

Polymer Microscopy Neural Network Crystallization Thin Film 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K.N. Pham et al., Science 296, 104 (2002)Google Scholar
  2. W.C.K. Poon, A.D. Pirie, P.N. Pusey, Faraday Discuss. 101, 65 (1995)Google Scholar
  3. W.C.K. Poon et al. Faraday Discuss. 112, 143 (1999) Google Scholar
  4. L. Starrs, W.C.K. Poon, D.J. Hibberd, M.M. Robins, J. Phys. Condens. Matter 14, 2485 (2002)Google Scholar
  5. P.N. Segrè, V. Prasad, A.B. Schofield, D.A. Weitz, Phys. Rev. Lett. 86, 6042 (2001)Google Scholar
  6. J. Bergenholtz, M. Fuchs, J. Phys.: Condens. Matter 11, 10171 (1999)Google Scholar
  7. Reviewed in A. Keller, Faraday Discuss. 101, 1 (1995)Google Scholar
  8. V.J. Anderson, R.A.L. Jones, Polymer 42, 9601 (2001)Google Scholar
  9. M. Muschol, F. Rosenberger, J. Chem. Phys. 103, 10424 (1995)Google Scholar
  10. A. Tardieu et al., J. Cryst. Growth 196, 193 (1999)Google Scholar
  11. G. Pellicane, D. Costa, C. Caccamo, J. Phys.: Condens. Matter 15, 375 (2003)Google Scholar
  12. A. George, W. Wilson, Acta. Crystallogr. D 50, 361 (1994)Google Scholar
  13. W.C.K. Poon, Phys. Rev. E 55, 3762 (1997)Google Scholar
  14. W.C.K. Poon, S.U. Egelhaaf, P.A. Beales, A. Salonen, J. Phys.: Condens. Matter 12, L569 (2000)Google Scholar
  15. M. Muschol, F. Rosenberger, J. Chem. Phys. 107, 1953 (1997)Google Scholar
  16. M.D. Haw, W.C.K. Poon, P.N. Pusey, Physica A 208, 8 (1994)Google Scholar
  17. A. Hasmy, R. Jullien, Phys. Rev. E 53, 1789 (1996)Google Scholar
  18. See, e.g., papers 1-6 in Faraday Discuss. 123 (2003) Google Scholar
  19. W.C.K. Poon, Faraday Discuss. 123, 95 (2003); K. Kroy, M.E. Cates, W.C.K. Poon, Phys. Rev. Lett. 92, 148302 (2004)Google Scholar
  20. M.A. Miller, D. Frenkel, Phys. Rev. Lett. 90, 135702 (2003)Google Scholar
  21. A.M. Kulkarni, N.M. Dixit, C.F. Zukoski, Faraday Discuss. 123, 37 (2003)Google Scholar
  22. V.G. Taratuta, A Holschbach, G.M. Thurston, D. Blankschtein, G.B. Benedek, J. Phys. Chem. 94, 2140 (1990)Google Scholar
  23. Y.G. Kuznetwov, A.J. Malkin, A. McPherson, J. Cryst. Growth 232, 30 (2001)Google Scholar
  24. Correspondingly, salt solution is ‘quenched’ along the path A′A; but the protein concentrations involved are lower, so that we do not discuss processes occurring in the salt-rich parts of our samples Google Scholar
  25. S. Hayward, D.W. Heermann, K. Binder, J. Stat. Phys. 49, 1053 (1987)Google Scholar
  26. I.M. Lifshitz, V.V. Slyozov, J. Phys. Chem. Solids 19, 35 (1961)CrossRefGoogle Scholar
  27. Comparing results in Bergenholtz99 and Noro suggests that decreasing the attraction range gradually drops NErg below LL Google Scholar
  28. M. Noro, D. Frenkel, J. Chem. Phys. 113, 2941 (2000)Google Scholar
  29. H. Sedgwick, A. Salonen, S.U. Egelhaaf, W.C.K. Poon, in preparation Google Scholar
  30. Note that many previous studies of lysozyme (e.g. Rosenberger97, Taratuta90) used temperature quenches to investigate liquid-liquid phase separation and aggregation. Since the relative positions of the relevant boundaries change with temperature, and observations are quench-path dependent, it is non-trivial to compare our constant-temperature findings to data from temperature quenches. A comprehensive data set covering a range of lysozyme concentrations, salt concentrations, and temperatures is required Google Scholar
  31. N.A.M. Verhaegh et al., Physica A 242, 104 (1997)Google Scholar
  32. R. Piazza, G. di Pietro, Europhys. Lett. 28, 445 (1994)Google Scholar
  33. J.C. Gimel, T. Nicolai, D. Durand, Phys. Rev. E 66, 061405 (2002). Lattice artifacts hamper comparison with simulations, e.g., the effective repulsive and attractive interactions are probably softenedGoogle Scholar
  34. J. Groenewold, W.K. Kegel, J. Phys. Chem. 105, 11702 (2001)Google Scholar
  35. H. Sedgwick, S.U. Egelhaaf, W.C.K. Poon, J. Phys.: Condens. Matter. 16, S4913 (2004); A. Stradner, Nature 432, 492 (2004)Google Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2005

Authors and Affiliations

  • H. Sedgwick
    • 1
  • K. Kroy
    • 1
    • 2
  • A. Salonen
    • 1
  • M. B. Robertson
    • 1
  • S. U. Egelhaaf
    • 1
  • W. C.K. Poon
    • 1
    Email author
  1. 1.School of Physics, The University of EdinburghScotlandUK
  2. 2.Hahn-Meitner-Institut BerlinBerlinGermany

Personalised recommendations