The European Physical Journal E

, Volume 16, Issue 1, pp 57–65 | Cite as

A model of Barchan dunes including lateral shear stress

  • V. Schwämmle
  • H. J. Herrmann
Regular Articles


Barchan dunes are found where sand availability is low and wind direction quite constant. The two dimensional shear stress of the wind field and the sand movement by saltation and avalanches over a barchan dune are simulated. The model with one dimensional shear stress is extended including surface diffusion and lateral shear stress. The resulting final shape is compared to the results of the model with a one dimensional shear stress and confirmed by comparison to measurements. We found agreement and improvements with respect to the model with one dimensional shear stress. Additionally, a characteristic edge at the center of the windward side is discovered which is also observed for big barchans. Diffusion effects reduce this effect for small dunes.


Polymer Neural Network Thin Film Shear Stress Complex System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. B. Andreotti, P. Claudin, S. Douady, Eur. Phys. J. B 28, 321 (2002) ADSGoogle Scholar
  2. R.A. Bagnold, The physics of blown sand and desert dunes (Methuen, London, 1941) Google Scholar
  3. J.P. Bouchaud, M.E. Cates, J. Ravi Prakash, S.F. Edwards, Hysteresis and metastability in a continuum sandpile model, J. Phys. I France 4, 1383 (1994)Google Scholar
  4. A. Coursin, Observations et expériences faites en avril et mai 1956 sur les barkhans du Souehel el Abiodh (région est de Port-Étienne), Bulletin de l’ I. F. A. N. 22 A, 989 (1964) Google Scholar
  5. H.J. Finkel, J. Geology 67, 614 (1959)CrossRefGoogle Scholar
  6. P.F. Fisher, P. Galdies, Computer and Geosciences 14, 229 (1988)ADSGoogle Scholar
  7. S. Hastenrath, Zeitschrift für Geomorphologie 11, 300 (1967)Google Scholar
  8. S. Hastenrath, Zeitschrift für Geomorphologie 31, 167 (1987)Google Scholar
  9. H.J. Herrmann, G. Sauermann, Physica A 283, 24 (2000)ADSGoogle Scholar
  10. P. Hersen, S. Douady, B. Andreotti, Phys. Rev. Lett. 89, 264301 (2002)ADSGoogle Scholar
  11. P.A. Hesp, K. Hastings, Geomorphology 22, 193 (1998)ADSGoogle Scholar
  12. A.D. Howard, J.B. Morton, Sedimentology 25, 307 (1978)ADSGoogle Scholar
  13. D. Jäkel, Zeitschrift für Geomorphologie N.F. 24, 141 (1980)Google Scholar
  14. J.A. Jimenez, L.P. Maia, J. Serra, J. Morais, Brazil. Sedimentology 46, 689 (1999)Google Scholar
  15. G. Kocurek, M. Townsley, E. Yeh, K. Havholm, M.L. Sweet, J. Sedimentary Petrology 62, 622 (1992)Google Scholar
  16. K. Kroy, G. Sauermann, H.J. Herrmann, Phys. Rev. Lett. 68, 54301 (2002)Google Scholar
  17. K. Lettau, H. Lettau, Zeitschrift für Geomorphologie N.F. 13, 182 (1969)Google Scholar
  18. K. Lettau, H. Lettau, Experimental and micrometeorological field studies of dune migration, in Exploring the world’s driest climate, edited by H.H. Lettau, K. Lettau (Madison, Center for Climatic Research, Univ. Wisconsin, 1978), pp. 110–147 Google Scholar
  19. H. Momiji, A. Warren, Earth Surface Processes and Landforms 25, 1069 (2000)Google Scholar
  20. H. Nishimori, M. Yamasaki, K.H. Andersen, Int. J. Modern Physics B 12, 257 (1999)ADSGoogle Scholar
  21. M. Sarnthein, E. Walger, Geologische Rundschau 63, 1065 (1974)ADSGoogle Scholar
  22. G. Sauermann, Modeling of Wind Blown Sand and Desert Dunes, Ph.D. thesis, University of Stuttgart, 2001 Google Scholar
  23. G. Sauermann, J.S. Andrade, L.P. Maia, U.M.S. Costa, A.D. Araújo, H.J. Herrmann, Geomorphology 1325, 1 (2003)Google Scholar
  24. G. Sauermann, K. Kroy, H.J. Herrmann, Phys. Rev. E 64, 31305 (2001)ADSGoogle Scholar
  25. G. Sauermann, P. Rognon, A. Poliakov, H.J. Herrmann, Geomorphology 36, 47 (2000)ADSGoogle Scholar
  26. V. Schwämmle, H.J. Herrmann, Modelling transverse dunes, cond-mat/0301589, 2003 Google Scholar
  27. M.C. Slattery, South African Geographical J. 72, 5 (1990)Google Scholar
  28. M. Sørensen, Acta Mechanica (Suppl.) 1, 67 (1991)Google Scholar
  29. J.M.T. Stam, Sedimentology 44, 127 (1997)ADSGoogle Scholar
  30. J.H. van Boxel, S.M. Arens, P.M. van Dijk, Earth Surf. Process. Landforms 24, 255 (1999)Google Scholar
  31. P.M. van Dijk, S.M. Arens, J.H. van Boxel, Earth Surf. Process. Landforms 24, 319 (1999)Google Scholar
  32. I.J. Walker, Earth Surface Processes and Landforms 24, 437 (1998)Google Scholar
  33. W.S. Weng, J.C.R. Hunt, D.J. Carruthers, A. Warren, G.F.S. Wiggs, I. Livingstone, I. Castro, Acta Mechanica (Suppl.) 2, 1 (1991)Google Scholar
  34. G.F.S. Wiggs, I. Livingstone, A. Warren, Geomorphology 17, 29 (1996)ADSGoogle Scholar
  35. F.K. Wippermann, G. Gross, Boundary Layer Meteorology 36, 319 (1986)ADSGoogle Scholar
  36. O. Zeman, N.O. Jensen, Progress report on modeling permanent form sand dunes, Risø National Laboratory, M-2738, 1988 Google Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2005

Authors and Affiliations

  1. 1.Institute for Computer Applications 1, University of StuttgartStuttgartGermany
  2. 2.Departamento de FísicaUniversidade Federal do CearáFortalezaBrazil

Personalised recommendations