The European Physical Journal E

, Volume 13, Issue 2, pp 189–196 | Cite as

Oscillatory patterns in a rotating aqueous suspension

  • A. P. J. Breu
  • C. A. KruelleEmail author
  • I. Rehberg


Suspensions of granular material in glycerin-water mixtures agitated in horizontally aligned rotating tubes show a whole variety of patterns. The stationary pattern of a homogeneous distribution and a chain of rings have been investigated before. Here we report on two types of oscillatory states in the same system. For a certain range of the rotation frequency and sufficiently high viscosity traveling waves propagate with constant velocity back and forth along the tube in an almost homogeneous distribution of sedimenting particles. The transition from a stationary to the traveling-wave state is found to be an imperfect supercritical bifurcation. The dependence of the wave length and speed on the tube’s rotation frequency and the dynamic viscosity of the fluid are determined. Experiments with low viscosities show no traveling waves but low-frequency oscillations, when the previously known chain of rings undergoes a secondary instability.


Viscosity Dynamic Viscosity Wave Length High Viscosity Constant Velocity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fluidization, edited by J.F. Davidson, R. Clift, D. Harrison (Academic Press, London, 1985), 2nd edn.Google Scholar
  2. 2.
    G.A. Voth, B. Bigger, M.R. Buckley, W. Losert, M.P. Brenner, H.A. Stone, J.P. Gollub, Phys. Rev. Lett. 88, 234301 (2002)CrossRefGoogle Scholar
  3. 3.
    D. Bonamy, F. Daviaud, L. Laurent, M. Bonetti, J.P. Bouchaud, Phys. Rev. Lett. 89, 034301 (2002)CrossRefGoogle Scholar
  4. 4.
    E. Fried, A.Q. Shen, S.T. Thoroddsen, Phys. Fluids 10, 10 (1998)CrossRefGoogle Scholar
  5. 5.
    A.Q. Shen, Phys. Fluids 14, 462 (2002)CrossRefGoogle Scholar
  6. 6.
    A.Q. Shen, Proc. R. Soc. Lond. A 459, 891 (2003)CrossRefGoogle Scholar
  7. 7.
    K. Choo, T.C.A. Molteno, S.W. Morris, Phys. Rev. Lett. 79, 2975 (1997)CrossRefGoogle Scholar
  8. 8.
    K. Choo, M.W. Baker, T.C.A. Molteno, S.W. Morris, Phys. Rev. E 58, 6115 (1998)CrossRefGoogle Scholar
  9. 9.
    I.S. Aranson, L.S. Tsimring, Phys. Rev. Lett. 82, 4643 (1999)CrossRefGoogle Scholar
  10. 10.
    I.S. Aranson, L.S. Tsimring, V.M. Vinokur, Phys. Rev. E 60, 1975 (1999)CrossRefGoogle Scholar
  11. 11.
    N. Jain, D.V. Khakhar, R.M. Lueptow, J.M. Ottino, Phys. Rev. Lett. 86, 3771 (2001)CrossRefGoogle Scholar
  12. 12.
    M. Tirumkudulu, A. Tripathi, A. Acrivos, Phys. Fluids 11, 507 (1999)CrossRefGoogle Scholar
  13. 13.
    M. Tirumkudulu, A. Mileo, A. Acrivos, Phys. Fluids 12, 1615 (2000)CrossRefGoogle Scholar
  14. 14.
    P.J. Thomas, G.D. Riddell, S. Kooner, G.P. King, Phys. Fluids 13, 2720 (2001)CrossRefGoogle Scholar
  15. 15.
    V. Frette, J. Stavans, Phys. Rev. E 56, 6981 (1997)CrossRefGoogle Scholar
  16. 16.
    S.G. Lipson, J. Phys. Condens. Matter 13, 5001 (2001)CrossRefGoogle Scholar
  17. 17.
    W.R. Matson, B.J. Ackerson, P. Tong, Phys. Rev. E 67, 050301(R) (2003)CrossRefGoogle Scholar
  18. 18.
    A.P.J. Breu, C.A. Kruelle, I. Rehberg, Europhys. Lett. 62, 491 (2003)CrossRefGoogle Scholar
  19. 19.
    S.T. Thoroddsen, L. Mahadevan, Exp. Fluids 23, 1 (1997)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2004

Authors and Affiliations

  1. 1.Experimentalphysik VUniversität BayreuthBayreuthGermany

Personalised recommendations