Electron impact ionisation cross sections of fluoro-substituted nucleosides

  • Stefan E. HuberEmail author
  • Andreas MauracherEmail author
Open Access
Regular Article
Part of the following topical collections:
  1. Topical Issue: Dynamics of Systems on the Nanoscale (2018)


We report calculated electron-impact ionisation cross sections (EICSs) for 2′-deoxycytidine (Cyt), 2′-deoxy-5-fluorocytidine (fCyt) and 2′,2′-difluorocytidine (gemcitabine, Gem) from threshold to 10 keV. We compare the Deutsch-Märk (DM) and the binary-encounter-Bethe (BEB) methods used to obtain these cross sections. The methods yield excellent agreement with each other, within 3–4% at the cross section maxima. In particular, the DM cross sections for Cyt, fCyt and Gem yield maxima of 29.88 Å2 at 79 eV, 28.96 Å2 at 82.2 eV and 29.51 Å2 at 83.4 eV, respectively, whereas the BEB cross sections yield maxima of 28.89 Å2 at 87.6 eV, 27.97 Å2 at 91.6 eV and 29.02 Å2 at 93.4 eV, respectively. In addition, we compute EICSs for small sequences built from the considered nucleosides, i.e. for the sequences Cyt-Cyt, fCyt-Cyt, Cyt-fCyt, Gem-Cyt and Cyt-Gem. We find that the resulting EICSs differ only slightly between different sequences of the same constituents. Moreover, they can be approximated with an accuracy within 6% by simply adding the EICSs of individual molecular subsystems. Finally, we find that alterations in the ionisation energy due to the presence of an aqueous solvent can be substantial and may hence also considerably affect the resulting EICSs especially at low energies close to the ionisation threshold.

Graphical abstract



Open access funding provided by Austrian Science Fund (FWF).


  1. 1.
    L. Pecorino, Molecular biology of cancer (Oxford University Press, Oxford, 2016)Google Scholar
  2. 2.
    T.Y. Seiwert, J.K. Salama, E.E. Vokes, Nat. Clin. Pract. Oncol. 4, 156 (2007)CrossRefGoogle Scholar
  3. 3.
    G.D. Wilson, S.M. Bentzen, P.M. Harari, Semin. Radiat. Oncol. 16, 2 (2006)CrossRefGoogle Scholar
  4. 4.
    D.S. Shewach, T.S. Lawrence, J. Clin. Oncol. 25, 4043 (2007)CrossRefGoogle Scholar
  5. 5.
    H. Abdoul-Carime, M.A. Huels, E. Illenberger, L. Sanche, J. Am. Chem. Soc. 123, 5354 (2001)CrossRefGoogle Scholar
  6. 6.
    M. Rezaee, D.J. Hunting, L. Sanche, Int. J. Radiat. Oncol. Biol. Phys. 87, 847 (2013)CrossRefGoogle Scholar
  7. 7.
    J. Kopyra, C. Koenig-Lehmann, I. Bald, E. Illenberger, Angew. Chem. Int. Ed. 48, 7904 (2009)CrossRefGoogle Scholar
  8. 8.
    J. Reedijk, Eur. J. Inorg. Chem. 2009, 1303 (2009)CrossRefGoogle Scholar
  9. 9.
    S. Denifl, P. Candori, S. Ptasinska, P. Limao-Vieira, V. Grill, T.D. Märk, P. Scheier, Eur. Phys. J. D 35, 391 (2005)ADSCrossRefGoogle Scholar
  10. 10.
    Y. Park, K. Polska, J. Rak, J.R. Wagner, L. Sanche, J. Phys. Chem. B 116, 9676 (2012)CrossRefGoogle Scholar
  11. 11.
    J. Kopyra, A. Keller, I. Bald, RSC Adv. 4, 6825 (2014)CrossRefGoogle Scholar
  12. 12.
    X.G. Ren, E.J. Al Maalouf, A. Dorn, S. Denifl, Nat. Commun. 7, 11093 (2016)ADSCrossRefGoogle Scholar
  13. 13.
    L.S. Cederbaum, J. Zobeley, F. Tarantelli, Phys. Rev. Lett. 79, 4778 (1997)ADSCrossRefGoogle Scholar
  14. 14.
    M. Dingfelder, Radiat. Prot. Dosim. 122, 16 (2006)CrossRefGoogle Scholar
  15. 15.
    M. Müller, M. Durante, H. Stocker, F. Merz, I. Bechmann, Eur. Phys. J. D 60, 171 (2010)ADSCrossRefGoogle Scholar
  16. 16.
    H. Deutsch, T.D. Märk, Int. J. Mass Spectrom. 79, R1 (1987)ADSCrossRefGoogle Scholar
  17. 17.
    Y.K. Kim, M.E. Rudd, Phys. Rev. A 50, 3954 (1994)ADSCrossRefGoogle Scholar
  18. 18.
    Y.K. Kim, M.A. Ali, M.E. Rudd, J. Res. Nat. Inst. Stand. Technol. 102, 693 (1997)CrossRefGoogle Scholar
  19. 19.
    S.P. Khare, S. Prakash, W.J. Meath, Int. J. Mass Spectrom. Ion Processes 88, 299 (1989)ADSCrossRefGoogle Scholar
  20. 20.
    M. Dingfelder, Radiat. Prot. Dosim. 99, 23 (2002)CrossRefGoogle Scholar
  21. 21.
    P. de Vera, R. Garcia-Molina, I. Abril, A. V. Solov’yov, Phys. Rev. Lett. 110, 148104 (2013)ADSCrossRefGoogle Scholar
  22. 22.
    P. de Vera, R. Garcia-Molina, I. Abril, Phys. Rev. Lett. 114, 018101 (2015)ADSCrossRefGoogle Scholar
  23. 23.
    D. Emfietzoglou, H. Nikjoo, Radiat. Res. 163, 98 (2005)ADSCrossRefGoogle Scholar
  24. 24.
    D. Emfietzoglou, H. Nikjoo, Radiat. Res. 167, 110 (2007)ADSCrossRefGoogle Scholar
  25. 25.
    D. Emfietzoglou, G. Papamichael, H. Nikjoo, Radiat. Res. 188, 355 (2017)ADSCrossRefGoogle Scholar
  26. 26.
    S.M. Pimblott, J.A. LaVerne, Radiat. Phys. Chem. 76, 1244 (2007)ADSCrossRefGoogle Scholar
  27. 27.
    H. Deutsch, K. Becker, M. Probst, T.D. Märk, in Advances in atomic, molecular, and optical physics, edited by E. Arimondo, P. R. Berman, C.C. Lin (Elsevier Academic Press Inc, San Diego, 2009), Vol. 57Google Scholar
  28. 28.
    H. Deutsch, P. Scheier, K. Becker, T.D. Märk, Int. J. Mass Spectrom. 233, 13 (2004)CrossRefGoogle Scholar
  29. 29.
    J.P. Desclaux, At. Data Nucl. Data Tables 12, 311 (1973)ADSCrossRefGoogle Scholar
  30. 30.
    H. Bethe, Ann. Phys. 397, 325 (1930)CrossRefGoogle Scholar
  31. 31.
    D. Margreiter, H. Deutsch, T.D. Märk, Int. J. Mass Spectrom. Ion Processes 139, 127 (1994)ADSCrossRefGoogle Scholar
  32. 32.
    H. Deutsch, K. Becker, S. Matt, T.D. Märk, Int. J. Mass Spectrom. 197, 37 (2000)CrossRefGoogle Scholar
  33. 33.
    R.S. Mulliken, J. Chem. Phys. 23, 1833 (1955)ADSCrossRefGoogle Scholar
  34. 34.
    R. Tang, J. Callaway, J. Chem. Phys. 84, 6854 (1986)ADSCrossRefGoogle Scholar
  35. 35.
    J. Wang, P. Cieplak, P.A. Kollman, J. Comput. Chem. 21, 1049 (2000)CrossRefGoogle Scholar
  36. 36.
    W.J. Stevens, H. Basch, M. Krauss, J. Chem. Phys. 81, 6026 (1984)ADSCrossRefGoogle Scholar
  37. 37.
    W.J. Stevens, M. Krauss, H. Basch, P.G. Jasien, Can. J. Chem. 70, 612 (1992)CrossRefGoogle Scholar
  38. 38.
    T.R. Cundari, W.J. Stevens, J. Chem. Phys. 98, 5555 (1993)ADSCrossRefGoogle Scholar
  39. 39.
    F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys. 7, 3297 (2005)CrossRefGoogle Scholar
  40. 40.
    W. Von Niessen, J. Schirmer, L.S. Cederbaum, Comput. Phys. Rep. 1, 57 (1984)ADSCrossRefGoogle Scholar
  41. 41.
    M. Cossi, V. Barone, R. Cammi, J. Tomasi, Chem. Phys. Lett. 255, 327 (1996)ADSCrossRefGoogle Scholar
  42. 42.
    V. Barone, M. Cossi, J. Tomasi, J. Chem. Phys. 107, 3210 (1997)ADSCrossRefGoogle Scholar
  43. 43.
    J. Tomasi, B. Mennucci, R. Cammi, Chem. Rev. 105, 2999 (2005)CrossRefGoogle Scholar
  44. 44.
    S. Miertus, E. Scrocco, J. Tomasi, Chem. Phys. 55, 117 (1981)CrossRefGoogle Scholar
  45. 45.
    D. Naujoks, R. Behrisch, J.P. Coad, L. Dekock, Nucl. Fusion 33, 581 (1993)ADSCrossRefGoogle Scholar
  46. 46.
    A. Kirschner, V. Philipps, J. Winter, U. Kogler, Nucl. Fusion 40, 989 (2000)ADSCrossRefGoogle Scholar
  47. 47.
    D. Borodin, A. Kirschner, S. Carpentier-Chouchana, R.A. Pitts, S. Lisgo, C. Björkas, P.C. Stangeby, J.D. Elder, A. Galonska, D. Matveev, V. Philipps, U. Samm, Phys. Scr. T145, 014008 (2011)ADSCrossRefGoogle Scholar
  48. 48.
    P. Slavček, B. Winter, M. Faubel, S.E. Bradforth, P. Jungwirth, J. Am. Chem. Soc. 131, 6460 (2009)CrossRefGoogle Scholar
  49. 49.
    I. Sukuba, A. Kaiser, S.E. Huber, J. Urban, M. Probst, Eur. Phys. J. D 70, 11 (2016)ADSCrossRefGoogle Scholar
  50. 50.
    S.E. Huber, I. Sukuba, J. Urban, J. Limtrakul, M. Probst, Eur. Phys. J. D 70, 182 (2016)ADSCrossRefGoogle Scholar
  51. 51.
    S.E. Huber, D. Süß, M. Probst, A. Mauracher, Mol. Phys. (2018). doi: 10.1080/00268976.2018.1509148Google Scholar
  52. 52.
    S.E. Huber, A. Mauracher, D. Süß, I. Sukuba, J. Urban, D. Borodin, M. Probst, J. Chem. Phys. 150, 024306 (2019)ADSCrossRefGoogle Scholar
  53. 53.
    A. Keller, J. Rackwitz, E. Cauët, J. Liévin, T. Körzdörfer, A. Rotaru, K.V. Gothelf, F. Besenbacher, I. Bald, Sci. Rep. 4, 7391 (2014)CrossRefGoogle Scholar
  54. 54.
    J. Rackwitz, M.L. Ranković, A.R. Milsavljević, I. Bald, Eur. Phys. J. D 71, 32 (2017)ADSCrossRefGoogle Scholar
  55. 55.
    J. Rackwitz, I. Bald, Chem. Eur. J. 24, 4680 (2018)CrossRefGoogle Scholar
  56. 56.
    K.L. Baluja, A. Agrawal, Phys. Lett. A 198, 225 (1995)ADSCrossRefGoogle Scholar
  57. 57.
    T.D. Märk, G.H. Dunn, Electron impact ionization (Springer, Wien, 1985)Google Scholar
  58. 58.
    S.E. Huber, A. Mauracher, I. Sukuba, J. Urban, T. Maihom, M. Probst, Eur. Phys. J. D 71, 335 (2017)ADSCrossRefGoogle Scholar
  59. 59.
    H. Deutsch, K. Becker, T.D. Märk, Int. J. Mass Spectrom. 167, 503 (1997)ADSCrossRefGoogle Scholar
  60. 60.
    Z. Li, P. Cloutier, L. Sanche, J.R. Wagner, J. Am. Chem. Soc. 132, 5422 (2010)CrossRefGoogle Scholar
  61. 61.
    M. McAllister, M. Smyth, B. Gu, G.A. Tribello, J. Kohanoff, J. Phys. Chem. Lett. 6, 3091 (2015)CrossRefGoogle Scholar
  62. 62.
    L. Sanche, Radiat. Phys. Chem. 128, 36 (2016)ADSCrossRefGoogle Scholar
  63. 63.
    K. Jorge, M. Maeve, A.T. Gareth, G. Bin, J. Phys.: Condens. Matter 29, 383001 (2017)Google Scholar
  64. 64.
    J.D. Gu, J. Leszczynski, H.F. Schaefer, Chem. Rev. 112, 5603 (2012)CrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Open Access This is an Open Access article distributed under the terms of the Creative Commons Attribution License (, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Authors and Affiliations

  1. 1.Institute of Ion Physics and Applied Physics, Leopold-Franzens-University InnsbruckInnsbruckAustria

Personalised recommendations