The mechanical properties and structural instability of single- and double-walled boron-nitride nanotubes functionalized with 2-methoxy-N,N-dimethylethanamine (MDE) using molecular dynamics simulations

  • Shahram AjoriEmail author
  • Amir Ameri
  • Reza AnsariEmail author
Regular Article


As an inorganic quasi-1D nanostructure with non-cytotoxic properties, boron-nitride nanotubes have been the center of interest to researchers due to their high potential biocompatible applications. Due to the importance of functionalization in designing novel devices, the mechanical properties and buckling behavior of functionalized single- and double-walled boron-nitride nanotubes with 2-methoxy-N,N-dimethylethanamine (MDE) are investigated using molecular dynamics (MD) simulations. The calculated results demonstrate that Young’s moduli of BNNTs reduce, while critical buckling force and critical strain of BNNTs increase as MDE are attached to BNNTs. Moreover, it is observed that by increasing the MDE weight percentage, critical buckling force and critical strain of functionalized BNNTs reduce, unlike Young’s modulus. It is also observed that variations of the aforementioned parameters corresponding to DWBNNTs are less sensitive to MDE weight percentage compared to SWBNNTs and they lie between its inner and outer constituent functionalized SWBNNTs. Moreover, snapshots of buckling mode shapes of functionalized BNNTs are presented.

Graphical abstract


Clusters and Nanostructures 


  1. 1.
    A. Rubio, J.L. Corkill, M.L. Cohen, Phys. Rev. B 49, 5081 (1994)ADSCrossRefGoogle Scholar
  2. 2.
    N.G. Chopra, R.L. Luyken, K. Cherrey, V.H. Crespi, M.L. Cohen, S.G. Louie, A. Zettl, Science 269, 966 (1995)ADSCrossRefGoogle Scholar
  3. 3.
    R. Ansari, S. Ajori, Phys. Lett. A 378, 2876 (2014)ADSCrossRefGoogle Scholar
  4. 4.
    S. Ajori, R. Ansari, Curr. Appl. Phys. 14, 1072 (2014)ADSCrossRefGoogle Scholar
  5. 5.
    R. Arenal, X. Blase, A. Loiseau, Adv. Phys. 59, 101 (2010)ADSCrossRefGoogle Scholar
  6. 6.
    R. Ansari, S. Ajori, Superlattices Microstruct. 93, 18 (2016)ADSCrossRefGoogle Scholar
  7. 7.
    Y.K. Yap, B-C-N Nanotubes and Related Nanostructures (Springer, Dordrecht, 2009)Google Scholar
  8. 8.
    X. Blase, A. Rubio, S.G. Louie, M.L. Cohen, Europhys. Lett. 28, 335 (1994)ADSCrossRefGoogle Scholar
  9. 9.
    J.M. Schnorr, T.M. Swager, Chem. Mater. 23, 646 (2011)CrossRefGoogle Scholar
  10. 10.
    R. Ansari, S. Ajori, F. Sadeghi, J. Phys. Chem. Solids 85, 264 (2015)ADSCrossRefGoogle Scholar
  11. 11.
    M. Terrones, Annu. Rev. Mater. Res. 33, 419 (2003)ADSCrossRefGoogle Scholar
  12. 12.
    S. Park, M. Vosguerichian, Z. Bao, Nanoscale 5, 1727 (2013)ADSCrossRefGoogle Scholar
  13. 13.
    E. Hernández, C. Goze, P. Bernier, A. Rubio, Phys. Rev. Lett. 80, 4502 (1998)ADSCrossRefGoogle Scholar
  14. 14.
    W.H. Moon, H.J. Hwang, Nanotechnology 15, 431 (2004)ADSCrossRefGoogle Scholar
  15. 15.
    J.W. Kang, H.J. Hwang, Comput. Mater. Sci. 31, 237 (2004)CrossRefGoogle Scholar
  16. 16.
    S.J. Zhou, C.Y. Ma, Y.Y. Meng, H.F. Su, Z. Zhu, S.L. Deng, S.Y. Xie, Nanotechnology 23, 055708 (2012)ADSCrossRefGoogle Scholar
  17. 17.
    L. Jiang, W. Guo, J. Mech. Phys. Solids 59, 1204 (2011)ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    Z. Gao, C. Zhi, Y. Bando, D. Golberg, T. Serizawa, Functionalization of boron nitride nanotubes for applications in nanobiomedicine, in Boron nitride nanotubes in nanomedicine (William Andrew Publishing, Norwich, NY, 2016), pp. 17–40Google Scholar
  19. 19.
    Z. Gao, C. Zhi, Y. Bando, D. Golberg, T. Serizawa, Nanobiomedicine 1, 7 (2014)CrossRefGoogle Scholar
  20. 20.
    S. Ajori, R. Ansari, Physica B 459, 58 (2015)ADSCrossRefGoogle Scholar
  21. 21.
    R. Ansari, S. Ajori, A. Ameri, Chem. Phys. Lett. 616–617, 120 (2014)CrossRefGoogle Scholar
  22. 22.
    R. Ansari, S. Ajori, S. Rouhi, Superlattices Microstruct. 77, 54 (2015)ADSCrossRefGoogle Scholar
  23. 23.
    R. Ansari, S. Ajori, S. Rouhi, Appl. Surf. Sci. 332, 640 (2015)ADSCrossRefGoogle Scholar
  24. 24.
    S. Ajori, R. Ansari, M. Darvizeh, Physica B 462, 8 (2015)CrossRefGoogle Scholar
  25. 25.
    Q. Weng, X. Wang, X. Wang, Y. Bando, D. Golberg, Chem. Soc. Rev. 45, 3989 (2016)CrossRefGoogle Scholar
  26. 26.
    A.M. Dez-Pascual, A.L. Dez-Vicente, RSC Adv. 6, 79507 (2016)CrossRefGoogle Scholar
  27. 27.
    R. Ansari, S. Ajori, A. Ameri, Appl. Surf. Sci. 366, 233 (2016)ADSCrossRefGoogle Scholar
  28. 28.
    X. Li, C. Zhi, N. Hanagata, M. Yamaguchi, Y. Bando, D. Golberg, Chem. Commun. 49, 7337 (2013)CrossRefGoogle Scholar
  29. 29.
    C. Lee, S. Bhandari, B. Tiwari, N. Yapici, D. Zhang, Y. Yap, Molecules 21, 922 (2016)CrossRefGoogle Scholar
  30. 30.
    H. Shin, J. Guan, M.Z. Zgierski, K.S. Kim, C.T. Kingston, B. Simard, ACS Nano 9, 12573 (2015)CrossRefGoogle Scholar
  31. 31.
    V.K. Thakur, J. Yan, M.F. Lin, C. Zhi, D. Golberg, Y. Bando, R. Sim, P.S. Lee, Polym. Chem. 3, 962 (2012)CrossRefGoogle Scholar
  32. 32.
    C. André, Y.C. Guillaume, Talanta 93, 274 (2012)CrossRefGoogle Scholar
  33. 33.
    M.A. Fernandez-Yague, A. Larrañaga, O. Gladkovskaya, A. Stanley, G. Tadayyon, Y. Guo, J.R. Sarasua, S.A. Tofail, D.I. Zeugolis, A. Pandit, M.J. Biggs, Bioconjugate Chem. 26, 2025 (2015)CrossRefGoogle Scholar
  34. 34.
    C.H. Lee, D. Zhang, Y.K. Yap, J. Phys. Chem. C 116, 1798 (2011)CrossRefGoogle Scholar
  35. 35.
    Q. Weng, X. Wang, X. Wang, Y. Bando, D. Golberg, Chem. Soc. Rev. 45, 3989 (2016)CrossRefGoogle Scholar
  36. 36.
    X. Li, C. Zhi, N. Hanagata, M. Yamaguchi, Y. Bando, D. Golberg, Chem. Commun. 49, 7337 (2013)CrossRefGoogle Scholar
  37. 37.
    J. Wu, L. Yin, A.C.S. Appl, Mater. Interfaces 3, 4354 (2011)CrossRefGoogle Scholar
  38. 38.
    T.H. Ferreira, L.M. Hollanda, M. Lancellotti, E.B. de Sousa, J. Biomed. Mater. Res. Part A 103, 2176 (2015)CrossRefGoogle Scholar
  39. 39.
    Z. Gao, K. Fujioka, T. Sawada, C. Zhi, Y. Bando, D. Golberg, M. Aizawa, T. Serizawa, Polym. J. 45, 567 (2013)CrossRefGoogle Scholar
  40. 40.
    J. Guan, B. Ashrafi, Y. Martinez-Rubi, M.B. Jakubinek, M. Rahmat, K.S. Kim, B. Simard, Nanocomposites 4, 10 (2018)CrossRefGoogle Scholar
  41. 41.
    C.Y. Zhi, Y. Bando, C.C. Tang, Q. Huang, D. Golberg, J. Mater. Chem. 18, 3900 (2008)CrossRefGoogle Scholar
  42. 42.
    H. Roohi, M. Jahantab, S.R. Delcheh, B.P. Khoshakhlagh, Struct. Chem. 26, 749 (2015)CrossRefGoogle Scholar
  43. 43.
    S.J. Plimpton, J. Comput. Phys. 117, 1 (1995)ADSCrossRefGoogle Scholar
  44. 44.
    C. Grindon, S. Harris, T. Evans, K. Novik, P. Coveney, C. Laughton, Phil. Trans. R. Soc. London A 362, 1373 (2004)ADSCrossRefGoogle Scholar
  45. 45.
    W.D. Cornell, P. Cieplak, C.I. Bayly, I.R. Gould, K.M. Merz Jr, D.M. Ferguson, D.C. Spellmeyer, T. Fox, J.W. Caldwell, P.A. Kollman, J. Am. Chem. Soc. 117, 5179 (1995)CrossRefGoogle Scholar
  46. 46.
    C.L. Zhang, H.S. Shen, J. Phys. D: Appl. Phys. 41, 055404 (2008)ADSCrossRefGoogle Scholar
  47. 47.
    M.P. Allen, D.J. Tildesley, Computer Simulation of Liquids (Oxford University Press, New York, 1986)Google Scholar
  48. 48.
    W.G. Hoover, Phys. Rev. A 31, 1695 (1985)ADSCrossRefGoogle Scholar
  49. 49.
    M.A. Thompson, Molecular docking using ArgusLab, an efficient shape-based search algorithm and the AScore scoring function, in ACS Meeting, Philadelphia, PA, 2004, 172, CINF 42Google Scholar
  50. 50.
    D. Baowan, J.M. Hill, Micro, Nano Lett. 2, 46 (2007)Google Scholar
  51. 51.
    J.H. Lee, J. Korean Phys. Soc. 9, 172 (2006)Google Scholar
  52. 52.
    A. Nag, K. Raidongia, K.P. Hembram, R. Datta, U.V. Waghmare, C.N.R. Rao, ACS Nano 4, 1539 (2010)CrossRefGoogle Scholar
  53. 53.
    R. Ansari, S. Ajori, S. Malakpour, Eur. Phys. J. Appl. Phys. 74, 10401 (2016)ADSCrossRefGoogle Scholar
  54. 54.
    J. Tersoff, Phys. Rev. B 37, 6991 (1988)ADSCrossRefGoogle Scholar
  55. 55.
    K. Albe, W. Muller, K.H. Heinig, Radiat. Eff. Defects Solids 141, 85 (1997)ADSCrossRefGoogle Scholar
  56. 56.
    K. Albe, W. Muller, Comput. Mater. Sci. 10, 111 (1998)CrossRefGoogle Scholar

Copyright information

© EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringFaculty of Engineering, University of MaraghehMaraghehIran
  2. 2.Department of Mechanical EngineeringUniversity of GuilanRashtIran

Personalised recommendations