Advertisement

Quantum beats and metrology in a rapidly rotating Nitrogen-Vacancy center

  • Weijun Cheng
  • Tian Tian
  • Zhihai WangEmail author
Regular Article

Abstract

In this paper, we study the dynamical behavior and quantum metrology in a rotating Nitrogen-Vacancy (NV) center system which is subject to an external magnetic field. Based on the recently realized rapid rotation of nano-rotor [J. Ahn, Z. Xu, J. Bang, Y.-H. Deng, T. M. Hoang, Q. Han, R.-M. Ma, T. Li, Phys. Rev. Lett. 121, 033603 (2018) and R. Reimann, M. Doderer, E. Hebestreit, R. Diehl, M. Frimmer, D. Windey, F. Tebbenjohanns, L. Novotny, Phys. Rev. Lett. 121, 033602 (2018)], the frequency of the rotation is close to that of the intrinsic frequency of the NV center system, we predict the quantum beats phenomenon in the time domain and show that the quantum metrology can be enhanced by the superposition effect in our system.

Graphical abstract

References

  1. 1.
    A. Gruber, A. Dräbenstedt, C. Tietz, L. Fleury, J. Wrachtrup, C. Von Borczyskowski, Science 276, 2012 (1997)Google Scholar
  2. 2.
    D.-D. Awschalom, M.E. Flatt, Nat. Phys. 3, 153 (2007)Google Scholar
  3. 3.
    N. Zhao, S.-W. Ho, R.-B. Liu, Phys. Rev. B 85, 115303 (2012)ADSGoogle Scholar
  4. 4.
    L. Viola, E. Knill, S. Lloyd, Phys. Rev. Lett. 82, 2417 (1999)ADSMathSciNetGoogle Scholar
  5. 5.
    L. Cywiński, R.-M. Lutchyn, C.-P. Nave, S.-D. Sarma, Phys. Rev. B 77, 174509 (2008)ADSGoogle Scholar
  6. 6.
    Y.-N. Fang, X. Xiao, C.-P. Sun, W. Yang, N. Zhao, https://arXiv:1807.02644 (2018)
  7. 7.
    J.-M. Cai, B. Naydenov, R. Pfeiffer, L.-P. McGuinness, K.-D. Jahnke, F. Jelezko, M.-B. Plenio, A. Retzker, New J. Phys. 14, 113023 (2012)ADSMathSciNetGoogle Scholar
  8. 8.
    M.-W. Doherty, N.-B. Manson, P. Delaney, F. Jelezko, J. Wrachtrup, L.C.L. Hollenberg, Phys. Rep. 528, 1 (2013)ADSGoogle Scholar
  9. 9.
    R. Schirhagl, K. Chang, M. Loretz, C.-L. Degen, Annu. Rev. Phys. Chem. 65, 83 (2014)ADSGoogle Scholar
  10. 10.
    L.P. McGuinness, Y. Yan, A. Stacey, D.A. Simpson, L.T. Hall, D. Maclaurin, S. Prawer, P. Mulvaney, J. Wrachtrup, F. Caruso, R.E. Scholten, L.C.L. Hollenberg, Nat. Nanotechnol. 6, 358 (2011)ADSGoogle Scholar
  11. 11.
    V.M. Acosta, E. Bauch, M.P. Ledbetter, A. Waxman, L.-S. Bouchard, D. Budker, Phys. Rev. Lett. 104, 070801 (2010)ADSGoogle Scholar
  12. 12.
    G. Kucsko, P.-C. Maurer, N.-Y. Yao, M. Kubo, H.-J. Noh, P.-K. Lo, H. Park, M.-D. Lukin, Nature 500, 54 (2013)ADSGoogle Scholar
  13. 13.
    D.-R. Glenn, K. Lee, H. Park, R. Weissleder, A. Yacoby, M.-D. Lukin, H. Lee, R.-L. Walsworth, C.B. Connolly, Nat. Methods 12, 736 (2015)Google Scholar
  14. 14.
    D.-L. Sage, K. Arai, D.-R. Glenn, S.-J. DeVience, L.-M. Pham, L.-R. Lee, M.-D. Lukin, A. Yacoby, A. Komeili, R.-L. Walsworth, Nature 496, 486 (2013)ADSGoogle Scholar
  15. 15.
    F. Shi, Q. Zhang, P. Wang, H. Sun, J. Wang, X. Rong, M. Chen, C. Ju, F. Reinhard, H. Chen, J. Wrachtrup, J. Wang, J. Du, Science 347, 1135 (2015)ADSGoogle Scholar
  16. 16.
    F. Dolde, H. Fedder, M.-W. Doherty, T. Nobauer, F. Rempp, G. Balasubramanian, T. Wolf, F. Reinhard, L.C.L. Hollenberg, F. Jelezko, J. Wrachtrup, Nat. Phys. 7, 459 (2011)Google Scholar
  17. 17.
    Y. Martin, D.-W. Abraham, H.-K. Wickramasinghe, Appl. Phys. Lett. 52, 1103 (1988)ADSGoogle Scholar
  18. 18.
    F. Jelezko, J. Wrachtrup, Phys. Status Solidi A 203, 3207 (2006)ADSGoogle Scholar
  19. 19.
    M.W. Doherty, V.V. Struzhkin, D.A. Simpson, L.-P.-M. Guinness, Y. Meng, A. Stacey, T.J. Karle, R.J. Hemley, N.B. Manson, L.C.L. Hollenberg, S. Prawer, Phys. Rev. Lett. 112, 047601 (2014)ADSGoogle Scholar
  20. 20.
    L. Rondin, J.-P. Tetienne, T. Hingant, J.-F. Roch, P. Maletinsky, V. Jacques, Rep. Prog. Phys. 77, 056503 (2014)ADSGoogle Scholar
  21. 21.
    G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P.-R. Hemmer, F. Jelezko, J. Wrachtrup, Nat. Mater. 8, 383 (2009)ADSGoogle Scholar
  22. 22.
    T. Wolf, P. Neumann, K. Nakamura, H. Sumiya, T. Ohshima, J. Isoya, J. Wrachtrup, Phys. Rev. X 5, 041001 (2015)Google Scholar
  23. 23.
    G. Balasubramanian, I.-Y. Chan, R. Kolesov, M. Al-Hmoud, J. Tisler, C. Shin, C. Kim, A. Wojcik, P.-R. Hemmer, A. Krueger, T. Hanke, A. Leitenstorfer, R. Bratschitsch, F. Jelezko, J. Wrachtrup, Nature 455, 648 (2008)ADSGoogle Scholar
  24. 24.
    A.A. Wood, E. Lilette, Y.Y. Fein, N. Tomek, L.P. McGuinness, L.C.L. Hollenberg, R.E. Scholten, A.M. Martin, Sci. Adv. 4, eaar7691 (2018)ADSGoogle Scholar
  25. 25.
    D. Maclaurin, M.W. Doherty, L.C.L. Hollenberg, A.M. Martin, Phys. Rev. Lett. 108, 240403 (2012)ADSGoogle Scholar
  26. 26.
    M.A. Kowarsky, L.C.L. Hollenberg, A.M. Martin, Phys. Rev. A 90, 042116 (2014)ADSGoogle Scholar
  27. 27.
    X.Y. Chen, T. Li, Z.Q. Yin, Sci. Bull. 64, 380 (2019)Google Scholar
  28. 28.
    A.A. Wood, E. Lilette, Y.Y. Fein, V.S. Perunicic, L.C.L. Hollenberg, R.E. Scholten, A.M. Martin, Nat. Phys. 13, 1070 (2017)Google Scholar
  29. 29.
    M.O. Scully, M.S. Zubairy, Quantum Optics (Cambridge University Press, 1997)Google Scholar
  30. 30.
    W. Chow, M.O. Scully, J. Stoner, Phys. Rev. A 11, 1380 (1975)ADSGoogle Scholar
  31. 31.
    R. Herman, H. Grotch, R. Kornblith, J. Eberly, Phys. Rev. A 11, 1389 (1975)ADSGoogle Scholar
  32. 32.
    T.H. Jeys, F.B. Dunning, R.F. Stebbings, Phys. Rev. A 29, 379 (1984)ADSGoogle Scholar
  33. 33.
    M. Mitsunaga, C.L. Tang, Phys. Rev. A 35, 1720 (1987)ADSGoogle Scholar
  34. 34.
    G.C. Hegerfeldt, M.B. Plenio, Phys. Rev. A 47, 2186 (1993)ADSGoogle Scholar
  35. 35.
    T. Legero, T. Wilk, M. Hennrich, G. Rempe, A. Kuhn, Phys. Rev. Lett. 93, 070503 (2004)ADSGoogle Scholar
  36. 36.
    D.G. Norris, L.A. Orozco, P. Barberis-Blostein, H.J. Carmichael, Phys. Rev. Lett. 105, 123602 (2010)ADSGoogle Scholar
  37. 37.
    X.-F. He, P.T.H. Fisk, N.B. Manson, J. Lumin. 60–61, 739 (1994)Google Scholar
  38. 38.
    S.C. Rand, A. Lenef, S.W. Brown, J. Lumin. 53, 68 (1992)Google Scholar
  39. 39.
    K. Fang, V.M. Acosta, C. Santori, Z. Huang, K.M. Itoh, H. Watanabe, S. Shikata, R.G. Beausoleil, Phys. Rev. Lett. 110, 130802 (2013)ADSGoogle Scholar
  40. 40.
    L. Hacquebard, L. Childress, Phys. Rev. A 97, 063408 (2018)ADSGoogle Scholar
  41. 41.
    J. Ahn, Z. Xu, J. Bang, Y.-H. Deng, T.M. Hoang, Q. Han, R.-M. Ma, T. Li, Phys. Rev. Lett. 121, 033603 (2018)ADSGoogle Scholar
  42. 42.
    R. Reimann, M. Doderer, E. Hebestreit, R. Diehl, M. Frimmer, D. Windey, F. Tebbenjohanns, L. Novotny, Phys. Rev. Lett. 121, 033602 (2018)ADSGoogle Scholar
  43. 43.
    S.L. Braunstein, C.M. Caves, Phys. Rev. Lett. 72, 3439 (1994)ADSMathSciNetGoogle Scholar
  44. 44.
    S.L. Braunstein, C.M. Caves, G.J. Milburn, Ann. Phys. (N.Y.) 247, 135 (1996)ADSGoogle Scholar
  45. 45.
    Y.M. Zhang, X.W. Li, W. Yang, G.R. Jin, Phys. Rev. A 88, 043832 (2013)ADSGoogle Scholar
  46. 46.
    W. Zhong, Z. Sun, J. Ma, X. Wang, F. Nori, Phys. Rev. A 87, 022337 (2013)ADSGoogle Scholar
  47. 47.
    J. Liu, H.-N. Xiong, F. Song, X. Wang, Physica A 410, 167 (2014)ADSMathSciNetGoogle Scholar
  48. 48.
    J. Liu, X.-X. Jing, W. Zhong, X.-G. Wang, Commun. Theor. Phys. 61, 45 (2014)ADSGoogle Scholar

Copyright information

© EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Center for Quantum Sciences and School of Physics, Northeast Normal UniversityChangchunP.R. China
  2. 2.School of Science, Changchun UniversityChangchunP.R. China

Personalised recommendations