Advertisement

The quantum Zeno and anti-Zeno effects: from weak to strong system-environment coupling

  • Bilal Khalid
  • Adam Zaman ChaudhryEmail author
Regular Article
  • 16 Downloads

Abstract

By repeatedly measuring a quantum system, the evolution of the system can be slowed down (the quantum Zeno effect) or sped up (the quantum anti-Zeno effect). We study these effects for a single two-level system coupled to a collection of harmonic oscillators. Previously, such systems have been studied in both the weak and the strong system-environment coupling regimes. In this paper, we apply a polaron transformation in a manner that allows us to study the quantum Zeno and anti-Zeno effects for a large variety of system-environment parameters. Using this approach, we reproduce previous results for the weak and strong system-environment coupling regimes. Moreover, as long as the environment is super-Ohmic, we show how our approach can be used to explore regimes such as the moderate system-environment coupling regime that could not be investigated before in a straightforward manner.

Graphical abstract

Keywords

Quantum Optics 

References

  1. 1.
    B. Misra, E.C.G. Sudarshan, J. Math. Phys. (N. Y.) 18, 756 (1977)ADSCrossRefGoogle Scholar
  2. 2.
    P. Facchi, V. Gorini, G. Marmo, S. Pascazio, E. Sudarshan, Phys. Lett. A 275, 12 (2000)ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    P. Facchi, S. Pascazio, Phys. Rev. Lett. 89, 080401 (2002)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    P. Facchi, S. Pascazio, J. Phys. A: Math. Theor. 41, 493001 (2008)CrossRefGoogle Scholar
  5. 5.
    X.-B. Wang, J.Q. You, F. Nori, Phys. Rev. A 77, 062339 (2008)ADSCrossRefGoogle Scholar
  6. 6.
    S. Maniscalco, F. Francica, R.L. Zaffino, N. Lo Gullo, F. Plastina, Phys. Rev. Lett. 100, 090503 (2008)ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    P. Facchi, M. Ligabò, J. Phys. A: Math. Theor. 51, 022103 (2010)ADSGoogle Scholar
  8. 8.
    B. Militello, M. Scala, A. Messina, Phys. Rev. A 84, 022106 (2011)ADSCrossRefGoogle Scholar
  9. 9.
    J.M. Raimond, P. Facchi, B. Peaudecerf, S. Pascazio, C. Sayrin, I. Dotsenko, S. Gleyzes, M. Brune, S. Haroche, Phys. Rev. A 86, 032120 (2012)ADSCrossRefGoogle Scholar
  10. 10.
    A. Smerzi, Phys. Rev. Lett. 109, 150410 (2012)ADSCrossRefGoogle Scholar
  11. 11.
    S.-C. Wang, Y. Li, X.-B. Wang, L.C. Kwek, Phys. Rev. Lett. 110, 100505 (2013)ADSCrossRefGoogle Scholar
  12. 12.
    K.T. McCusker, Y.-P. Huang, A.S. Kowligy, P. Kumar, Phys. Rev. Lett. 110, 240403 (2013)ADSCrossRefGoogle Scholar
  13. 13.
    K. Stannigel, P. Hauke, D. Marcos, M. Hafezi, S. Diehl, M. Dalmonte, P. Zoller, Phys. Rev. Lett. 112, 120406 (2014)ADSCrossRefGoogle Scholar
  14. 14.
    B. Zhu, B. Gadway, M. Foss-Feig, J. Schachenmayer, M.L. Wall, K.R.A. Hazzard, B. Yan, S.A. Moses, J.P. Covey, D.S. Jin, J. Ye, M. Holland, A.M. Rey, Phys. Rev. Lett. 112, 070404 (2014)ADSCrossRefGoogle Scholar
  15. 15.
    F. Schäffer, I. Herrera, S. Cherukattil, C. Lovecchio, F.S. Cataliotti, F. Caruso, A. Smerzi, Nat. Commun. 5, 3194 (2014)ADSCrossRefGoogle Scholar
  16. 16.
    A. Signoles, A. Facon, D. Grosso, I. Dotsenko, S. Haroche, J.-M. Raimond, M. Brune, S. Gleyzes, Nat. Phys. 10, 715 (2014)CrossRefGoogle Scholar
  17. 17.
    V. Debierre, I. Goessens, E. Brainis, T. Durt, Phys. Rev. A 92, 023825 (2015)ADSCrossRefGoogle Scholar
  18. 18.
    A.H. Kiilerich, K. Mølmer, Phys. Rev. A 92, 032124 (2015)ADSCrossRefGoogle Scholar
  19. 19.
    J. Qiu, Y.-Y. Wang, Z.-Q. Yin, M. Zhang, Q. Ai, F.-G. Deng, Sci. Rep. 5, 17615 (2015)ADSCrossRefGoogle Scholar
  20. 20.
    D.H. Slichter, C. Müller, R. Vijay, S.J. Weber, A. Blais, I. Siddiqi, New. J. Phys. 18, 053031 (2016)ADSCrossRefGoogle Scholar
  21. 21.
    M.M. Mueller, S. Gherardini, F. Caruso, Sci. Rep. 6, 38650 (2016)ADSCrossRefGoogle Scholar
  22. 22.
    S. Gherardini, S. Gupta, F.S. Cataliotti, A. Smerzi, F. Caruso, S. Ruffo, New J. Phys. 18, 013048 (2016)ADSCrossRefGoogle Scholar
  23. 23.
    W. Wu, H.-Q. Lin, Phys. Rev. A 95, 042132 (2017)ADSCrossRefGoogle Scholar
  24. 24.
    Z. Zhou, Z. Lü, H. Zheng, H.-S. Goan, Phys. Rev. A 96, 032101 (2017)ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    A.Z. Chaudhry, Sci. Rep. 7, 1741 (2017)ADSCrossRefGoogle Scholar
  26. 26.
    M.J. Aftab, A.Z. Chaudhry, Sci. Rep. 7, 11766 (2017)ADSCrossRefGoogle Scholar
  27. 27.
    L. Magazzu, P. Talkner, P. Hanggi, New J. Phys. 20, 033001 (2018)ADSCrossRefGoogle Scholar
  28. 28.
    W. Wu, Ann. Phys. 396, 147 (2018)ADSCrossRefGoogle Scholar
  29. 29.
    M. Majeed, A.Z. Chaudhry, Sci. Rep. 8, 14887 (2018)ADSCrossRefGoogle Scholar
  30. 30.
    A.G. Kofman, G. Kurizki, Nature (London) 405, 546 (2000)ADSCrossRefGoogle Scholar
  31. 31.
    K. Koshino, A. Shimizu, Phys. Rep. 412, 191 (2005)ADSMathSciNetCrossRefGoogle Scholar
  32. 32.
    P.-W. Chen, D.-B. Tsai, P. Bennett, Phys. Rev. B 81, 115307 (2010)ADSCrossRefGoogle Scholar
  33. 33.
    A. Barone, G. Kurizki, A.G. Kofman, Phys. Rev. Lett. 92, 200403 (2004)ADSCrossRefGoogle Scholar
  34. 34.
    K. Fujii, K. Yamamoto, Phys. Rev. A 82, 042109 (2010)ADSCrossRefGoogle Scholar
  35. 35.
    M.C. Fischer, B. Gutiérrez-Medina, M.G. Raizen, Phys. Rev. Lett. 87, 040402 (2001)ADSCrossRefGoogle Scholar
  36. 36.
    S. Maniscalco, J. Piilo, K.-A. Suominen, Phys. Rev. Lett. 97, 130402 (2006)ADSCrossRefGoogle Scholar
  37. 37.
    D. Segal, D.R. Reichman, Phys. Rev. A 76, 012109 (2007)ADSCrossRefGoogle Scholar
  38. 38.
    H. Zheng, S.Y. Zhu, M.S. Zubairy, Phys. Rev. Lett. 101, 200404 (2008)ADSCrossRefGoogle Scholar
  39. 39.
    Q. Ai, Y. Li, H. Zheng, C.P. Sun, Phys. Rev. A 81, 042116 (2010)ADSCrossRefGoogle Scholar
  40. 40.
    A. Thilagam, J. Phys. A: Math. Theor. 43 (2010) 155301.ADSMathSciNetCrossRefGoogle Scholar
  41. 41.
    A. Thilagam, J. Chem. Phys. 138, 175102 (2013)ADSCrossRefGoogle Scholar
  42. 42.
    A.Z. Chaudhry, J. Gong, Phys. Rev. A 90, 012101 (2014)ADSCrossRefGoogle Scholar
  43. 43.
    A.Z. Chaudhry, Sci. Rep. 6, 29497 (2016)ADSCrossRefGoogle Scholar
  44. 44.
    R. Silbey, R.A. Harris, J. Chem. Phys. 80, 2615 (1984)ADSCrossRefGoogle Scholar
  45. 45.
    T. Vorrath, T. Brandes, Phys. Rev. Lett. 95, 070402 (2005)ADSCrossRefGoogle Scholar
  46. 46.
    A.W. Chin, J. Prior, S.F. Huelga, M.B. Plenio, Phys. Rev. Lett. 107, 160601 (2011)ADSCrossRefGoogle Scholar
  47. 47.
    C.K. Lee, J. Moix, J. Cao, J. Chem. Phys. 136, 204120 (2012)ADSCrossRefGoogle Scholar
  48. 48.
    C.K. Lee, J. Cao, J. Gong, Phys. Rev. E 86, 021109 (2012)ADSCrossRefGoogle Scholar
  49. 49.
    D. Gelbwaser-Klimovsky, A. Aspuru-Guzik, J. Chem. Phys. Lett. 6, 3477 (2015)CrossRefGoogle Scholar
  50. 50.
    D.P.S. McCutcheon, A. Nazir, New J. Phys. 12, 113042 (2010)ADSCrossRefGoogle Scholar
  51. 51.
    A.J. Leggett, S. Chakravarty, A.T. Dorsey, M.P.A. Fisher, A. Garg, W. Zwerger, Rev. Mod. Phys. 59, 1 (1987)ADSCrossRefGoogle Scholar
  52. 52.
    U. Weiss, Quantum Dissipative Systems (World Scientific, Singapore, 2008)Google Scholar
  53. 53.
    H.-P. Breuer, F. Petruccione, The Theory of Open Quantum Systems (Oxford University Press, Oxford, 2007)Google Scholar
  54. 54.
    S. Jang, Y.-C. Cheng, D.R. Reichman, J.D. Eaves, J. Chem. Phys. 129, 101104 (2008)ADSCrossRefGoogle Scholar
  55. 55.
    S. Jang, P.-P. Zhang, Y.-C. Cheng, J. Chem. Phys. 139, 224112 (2013)ADSCrossRefGoogle Scholar
  56. 56.
    A.Z. Chaudhry, J. Gong, Phys. Rev. A 87, 012129 (2013)ADSCrossRefGoogle Scholar
  57. 57.
    A.Z. Chaudhry, J. Gong, Phys. Rev. A 88, 052107 (2013)ADSCrossRefGoogle Scholar
  58. 58.
    Y. Matsuzaki, S. Saito, K. Kakuyanagi, K. Semba, Phys. Rev. B 82, 180518 (2010)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Science & Engineering, Lahore University of Management Sciences (LUMS), Opposite Sector U, D.H.ALahorePakistan

Personalised recommendations