Advertisement

Simulation of plasma dynamics during discharge ignition in Hall thruster

  • Liqiu WeiEmail author
  • Qian Gao
  • Wenbo Li
  • Hong Li
  • Yongjie Ding
  • You Lv
  • Fan Wu
  • Wenci Gu
  • Daren Yu
Regular Article
  • 15 Downloads

Abstract

Because of the lack of effective methods to measure the evolution of plasma in the channel of a Hall thruster, the dynamic behavior of the Hall thruster, the ignition process, was investigated by a two-dimensional axisymmetric fully kinetic particle-in-cell/Monte Carlo collision model. The corresponding evolutions of plasma density, electric potential, and neutral density during the ignition process are discussed. The results which show a pulse duration of 15 μs, a peak current value of 142 A and a stable oscillation frequency of 20 kHz, indicate that during the ignition process, the anode current rises rapidly with the increase of the plasma density, the consumption of the neutrals, and the change of the position where the main potential drops. The model can provide a new and valid method to analyze the ignition of the Hall thruster.

Graphical abstract

Keywords

Plasma Physics 

References

  1. 1.
    I. Levchenko, S. Xu, S. Mazouffre, M. Keidar, K. Bazaka, Glob. Chal. 2018, 1800062 (2018) Google Scholar
  2. 2.
    E.Y. Choueiri, J. Propul. Power 20, 193 (2004) CrossRefGoogle Scholar
  3. 3.
    I. Levchenko, M. Keidar, J. Cantrell, Y.L. Wu, H. Kuninaka, K. Bazaka, S. Xu, Nature 562, 185 (2018) ADSCrossRefGoogle Scholar
  4. 4.
    S. Mazouffre, Plasma Sources Sci. Technol. 25, 033002 (2016) ADSCrossRefGoogle Scholar
  5. 5.
    B. Zypries, Space Policy 41, 73 (2017) ADSCrossRefGoogle Scholar
  6. 6.
    S. Hurley, G. Teel, J. Lukas, S. Haque, M. Keidar, C. Dinelli, J. Kang, Aerosp. Technol. Jpn. 14, Pb157 (2016) CrossRefGoogle Scholar
  7. 7.
    T. Andreussi, V. Giannetti, A. Leporini, M.M. Saravia, M. Andrenucci, Plasma Phys. Cont. Fusion 60, 014015 (2017) ADSCrossRefGoogle Scholar
  8. 8.
    L. Grimaud, S. Mazouffre, Plasma Sources Sci. Technol. 26, 055020 (2017) ADSCrossRefGoogle Scholar
  9. 9.
    J. Vaudolon, S. Mazouffre, C. Hénaux, D. Harribey, A. Rossi, Appl. Phys. Lett. 107, 174103 (2015) ADSCrossRefGoogle Scholar
  10. 10.
    Z. Zhang, H. Tang, J. Ren, Z. Zhang, J. Wang, Rev. Sci. Instr. 87, 113502 (2016) ADSCrossRefGoogle Scholar
  11. 11.
    Z. Wu, G. Sun, Z. Liu, X. Liu, K. Xie, N. Wang, Phys. Plasmas 24, 113521 (2017) ADSCrossRefGoogle Scholar
  12. 12.
    Y. Qin, K. Xie, N. Guo, Z. Zhang, C. Zhang, Z. Gu, Y. Zhang, Z. Jiang, J. Ouyang, Acta Astron. 134, 265 (2017) CrossRefGoogle Scholar
  13. 13.
    T. Huang, Z. Wu, X. Liu, K. Xie, N. Wang, Y. Cheng, Acta Astron. 129, 309 (2016) CrossRefGoogle Scholar
  14. 14.
    M. Walker, Aerosp. Am. 43, 54 (2005) Google Scholar
  15. 15.
    I. Levchenko, K. Bazaka, S. Mazouffre, S. Xu, Nat. Photon. 12, 649 (2018) ADSCrossRefGoogle Scholar
  16. 16.
    K. Bazaka, O. Baranov, U. Cvelbar, B. Podgornik, Y. Wang, S. Huang et al., Adv. Mater. 10, 17494 (2018) Google Scholar
  17. 17.
    I. Levchenko, K. Bazaka, Y. Ding, Y. Raitses, S. Mazouffre, T. Henning et al., Appl. Phys. Rev. 5, 011104 (2018) ADSCrossRefGoogle Scholar
  18. 18.
    E.Y. Choueiri. Phys. Plasmas 8, 1411 (2001) ADSCrossRefGoogle Scholar
  19. 19.
    B. Arkhipov, A. Koryakin, V. Murashko, A. Nesterenko, S. Olotin, A. Yurlev, Spacecraft Propul. 465, 311 (2000) ADSGoogle Scholar
  20. 20.
    V. Vial, S. Mazouffre, M. Prioul, D. Pagnon, A. Bouchoule, IEEE Trans. Plasma Sci. 33, 524 (2005) ADSCrossRefGoogle Scholar
  21. 21.
    S. Oghienko, A. Rybakov, Spacecraft Propul. 465, 855 (2000) ADSGoogle Scholar
  22. 22.
    W. Li, Y. Ding, L. Wei, L. Han, D. Yu, Vacuum 136, 77 (2017) ADSCrossRefGoogle Scholar
  23. 23.
    L. Wei, J. Li, L. Han, Z. Yang, D. Yu, C. Zhang, X. He, Vacuum 123, 126 (2016) CrossRefGoogle Scholar
  24. 24.
    Y. Ding, H. Li, L. Wei, Y. Hu, Y. Shen, H. Liu et al., IEEE Trans. Plasma Sci. 46, 263 (2018) ADSCrossRefGoogle Scholar
  25. 25.
    S. Yan, W. Li, Y. Ding, L. Wei, D. Yu, IEEE Trans. Plasma Sci. 1 (2018) Google Scholar
  26. 26.
    F. Taccogna, S. Longo, M. Capitelli, R. Schneider, Contrib. Plasm. Phys. 46, 781 (2006) ADSCrossRefGoogle Scholar
  27. 27.
    H. Liu, D. Yu, G.J. Yan, J.Y. Liu, Contrib. Plasma Phys. 48, 603 (2010) ADSCrossRefGoogle Scholar
  28. 28.
    D. Yu, H. Li, Z. Wu, Z. Ning, G. Yan, Phys. Plasmas 16, 103504 (2009) ADSCrossRefGoogle Scholar
  29. 29.
    R.R. Hofer, R.S. Jankovsky, A.D. Gallimore. J. Propul.Power 22, 721 (2006) CrossRefGoogle Scholar
  30. 30.
    H. Liu, B. Wu, D. Yu, Y. Cao, P. Duan, J. Phys. D 43, 165202 (2010) ADSCrossRefGoogle Scholar
  31. 31.
    H. Li, Z. Ning, D. Yu, J. Appl. Phys. 113, 083303 (2013) ADSCrossRefGoogle Scholar
  32. 32.
    J.M. Haas, A.D. Gallimore, Phys. Plasmas 8, 652 (2001) ADSCrossRefGoogle Scholar
  33. 33.
    V. Vahedi, M. Surendra, Comput. Phys. Commun. 87, 179 (1995) ADSCrossRefGoogle Scholar
  34. 34.
    J.J. Szabo Jr., Ph.D. thesis, Massachusetts Institute of Technology, 2001 Google Scholar
  35. 35.
    F. Taccogna, S. Longo, M. Capitelli, R. Schneider, Phys. Plasmas 12, 043502 (2005) ADSCrossRefGoogle Scholar
  36. 36.
    C.E. Garner, J.C. Polk, K.M. Goodfellow, L.C. Pless, J.R. Brophy, International Electric Propulsion Conference Paper 93-091, 1993 Google Scholar
  37. 37.
    G.J.M. Hagelaar, J. Bareilles, L. Garrigues, J.P. Boeuf, Contrib. Plasma Phys. 44, 529 (2004) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Liqiu Wei
    • 1
    Email author
  • Qian Gao
    • 1
  • Wenbo Li
    • 1
  • Hong Li
    • 1
  • Yongjie Ding
    • 1
  • You Lv
    • 1
  • Fan Wu
    • 1
  • Wenci Gu
    • 1
  • Daren Yu
    • 1
  1. 1.Plasma Propulsion Lab, Institute of Advanced Power, Harbin Institute of TechnologyHarbinP.R. China

Personalised recommendations