Advertisement

Uniformity improvement of plumes in an atmospheric pressure argon plasma jet array by electric field optimization

  • Xue Li
  • Yufei Liu
  • Lifeng Wang
  • Feng LiuEmail author
  • Zhi FangEmail author
Regular Article
  • 5 Downloads

Abstract

Atmospheric Pressure Plasma Jet (APPJ) array is a promising way for producing plasma to process large-scale uneven surface. In this paper, the uniformity of a one-dimensional (1D) Ar APPJ array (three tubes with needle-ring electrode structure) driven by a nanosecond pulse power source is optimized through varying the distance between the tip of middle HV electrode and outside electrode, d. The effects of parameters (gas flow rate and applied voltage) on the uniformity of jet array are also investigated. The voltage-current waveform, discharge optical image and ICCD photograph are measured to reveal the jet-to-jet interactions. The results show that when d = 0 mm, the middle tube plasma jet length is always shorter than outsides, while all jets are ignited with almost equal length at d = 2 mm and the middle tube plasma jet length is longer than outsides at d = 4 mm. Thus, the uniform atmospheric pressure plasma jet array is obtained by setting d = 2 mm. The unconformity of the plasma jet array length is mainly attributed to the number of transferred charge of primary discharge. The results reported in our study would be able to promote the application of uniform jet arrays for various applications.

Graphical abstract

Keywords

Plasma Physics 

References

  1. 1.
    D. Mance, R. Wiese, T. Kewitz, H. Kersten, Eur. Phys. J. D. 72, 98 (2018)ADSCrossRefGoogle Scholar
  2. 2.
    Y. Wang, C. Cheng, P. Gao, S. Li, J. Shen, Y. Lan, Y. Yu, P.K. Chu, Plasma Sci. Technol. 19, 025503 (2017)ADSCrossRefGoogle Scholar
  3. 3.
    Z. Xu, J. Shen, C. Cheng, S. Hu, Y. Lan, P.K. Chu, J. Phys. D: Appl. Phys. 50, 105201 (2017)ADSCrossRefGoogle Scholar
  4. 4.
    X.Y. Zhang, C.H. Hsu, Y.S. Cho, S. Zhang, S.Y. Lien, W.Z. Zhu, F.B. Xiong, Thin Solid Films 660, 797 (2018)ADSCrossRefGoogle Scholar
  5. 5.
    D. Sun, Q. Sun, W. Xing, Z. Sun, H. Shang, L. Chang, X. Wang, P. Liu, T. Hall, AIP Adv. 8, 085217 (2018)ADSCrossRefGoogle Scholar
  6. 6.
    Y. Ladner, F. D’Orlyé, C. Perréard, B. Da Silva, C. Guyon, M. Tatoulian, S. Griveau, F. Bedioui, A. Varenne, Plasma Process. Polym. 11, 518 (2014)CrossRefGoogle Scholar
  7. 7.
    S. Keniley, D. Curreli, Fusion Sci. Technol. 71, 93 (2017)CrossRefGoogle Scholar
  8. 8.
    J. Schäfer, F. Sigeneger, R. Foest, D. Loffhagen, K.D. Weltmann, Eur. Phys. J. D 72, 90 (2018)ADSCrossRefGoogle Scholar
  9. 9.
    H. Guo, N. Jiang, J. Li, Y. Wu, Vacuum 156, 402 (2018)ADSCrossRefGoogle Scholar
  10. 10.
    J.T. Hu, X.Y. Liu, J.H. Liu, Z.L. Xiong, D.W. Liu, X.P. Lu, F. Iza, M.G. Kong, Phys. Plasmas 19, 063505 (2012)ADSCrossRefGoogle Scholar
  11. 11.
    C. Qian, Z. Fang, J. Yang, IEEE Trans. Plasma Sci. 42, 2438 (2014)ADSCrossRefGoogle Scholar
  12. 12.
    E. Robert, T. Darny, S. Dozias, S. Iseni, J.M. Pouvesle, Phys. Plasmas 22, 122007 (2015)ADSCrossRefGoogle Scholar
  13. 13.
    W.J. Nam, S.T. Lee, S.Y. Jeong, J.K. Lee, G.S. Yun, Eur. Phys. J. D 71, 134 (2017)ADSCrossRefGoogle Scholar
  14. 14.
    P.P. Sun, J.H. Cho, C.H. Park, IEEE Trans. Plasma Sci. 40, 2946 (2012)ADSCrossRefGoogle Scholar
  15. 15.
    J.Y. Kim, J. Ballato, S.O. Kim, Plasma Process. Polym. 9, 253 (2012)CrossRefGoogle Scholar
  16. 16.
    R. Zhang, Q. Han, Y. Xia, S. Li, Plasma Sci. Technol. 19, 105505 (2017)ADSCrossRefGoogle Scholar
  17. 17.
    B.J. Lee, G.H. Jeong, Fullerenes Nanotubes Carbon Nanostruct. 26, 116 (2018)ADSCrossRefGoogle Scholar
  18. 18.
    A. Hosseinzadeh Colagar, O. Alavi, S. Motallebi, F. Sohbatzadeh, Arab. J. Sci. Eng. 41, 2139 (2015)CrossRefGoogle Scholar
  19. 19.
    X. Cui, B. Yan, B. Zhang, Z. Fang, Vacuum 151, 15 (2018)ADSCrossRefGoogle Scholar
  20. 20.
    S. Wu, Z. Wang, Q. Huang, X. Lu, Y. Pan, IEEE Trans. Plasma Sci. 39, 1489 (2011)ADSCrossRefGoogle Scholar
  21. 21.
    H. Guo, X. Yao, J. Li, N. Jiang, Y. Wu, Plasma Sci. Technol. 20, 105404 (2018)ADSCrossRefGoogle Scholar
  22. 22.
    Q.Q. Fan, M.Y. Qian, C.S. Ren, IEEE Trans. Plasma Sci. 40, 1724 (2012)ADSCrossRefGoogle Scholar
  23. 23.
    F. Liu, B. Zhang, Z. Fang, M. Wan, H. Wan, K.K. Ostrikov, Plasma Process. Polym. 15, e1700114 (2018)CrossRefGoogle Scholar
  24. 24.
    N.Y. Babaeva, M.J. Kushner, Plasma Sources Sci. Technol. 23, 015007 (2014)ADSCrossRefGoogle Scholar
  25. 25.
    C. Zhang, T. Shao, Y. Zhou, Appl. Phys. Lett. 105, 044102 (2014)ADSCrossRefGoogle Scholar
  26. 26.
    M. Ghasemi, P. Olszewski, J.W. Bradley, J.L. Walsh, J. Phys. D: Appl. Phys. 46, 052001 (2013)ADSCrossRefGoogle Scholar
  27. 27.
    R. Wang, H. Sun, W. Zhu, C. Zhang, S. Zhang, T. Shao, Phys. Plasmas 24, 093507 (2017)ADSCrossRefGoogle Scholar
  28. 28.
    Z. Fang, T. Shao, J. Yang, C. Zhang, Eur. Phys. J. D 70, 3 (2016)ADSCrossRefGoogle Scholar
  29. 29.
    R. Zhou, B. Zhang, R. Zhou, F. Liu, Z. Fang, K.K. Ostrikov, J. Appl. Phys. 124, 033301 (2018)ADSCrossRefGoogle Scholar
  30. 30.
    M. Wan, F. Liu, Z. Fang, B. Zhang, H. Wan, Phys. Plasmas 24, 093514 (2017)ADSCrossRefGoogle Scholar
  31. 31.
    J.P. Boeuf, L.L. Yang, L.C. Pitchford, J. Phys. D: Appl. Phys. 46, 015201 (2013)ADSCrossRefGoogle Scholar
  32. 32.
    Y. Lu, S. Wu, W. Cheng, X. Lu, Eur. Phys. J. Special Topics 226, 2979 (2017)ADSCrossRefGoogle Scholar
  33. 33.
    Q. Xiong, X. Lu, K. Ostrikov, Z. Xiong, Y. Xian, F. Zhou, C. Zou, J. Hu, W. Gong, Z. Jiang, Phys. Plasmas 16, 043505 (2009)ADSCrossRefGoogle Scholar
  34. 34.
    Q. Xiong, A.Y. Nikiforov, X.P. Lu, C. Leys, J. Phys. D: Appl. Phys. 43, 415201 (2010)CrossRefGoogle Scholar
  35. 35.
    M.H. Qaisrani, Y. Xian, C. Li, X. Pei, M. Ghasemi, X. Lu, Phys. Plasmas 23, 063523 (2016)ADSCrossRefGoogle Scholar
  36. 36.
    Y.B. Xian, M. Hasnain Qaisrani, Y.F. Yue, X.P. Lu, Phys. Plasmas 23, 103509 (2016)ADSCrossRefGoogle Scholar
  37. 37.
    Y. Zheng, L. Wang, W. Ning, S. Jia, J. Appl. Phys. 119, 123301 (2016)ADSCrossRefGoogle Scholar
  38. 38.
    R. Zhou, F. Liu, L. Wang, X. Li, Z. Fang, AIP Adv. 8, 115004 (2018)ADSCrossRefGoogle Scholar
  39. 39.
    Z. Fang, C. Ruan, T. Shao, C. Zhang, Plasma Sources Sci. Technol. 25, 01LT01 (2016)CrossRefGoogle Scholar

Copyright information

© EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Electrical Engineering and Control Science, Nanjing Tech UniversityNanjingP.R. China

Personalised recommendations