Tunable coupling between a superconducting resonator and an artificial atom

  • Qi-Kai He
  • Duan-Lu ZhouEmail author
Regular Article


Coherent manipulation of a quantum system is one of the main themes in current physics researches. In this work, we design a circuit QED system with a tunable coupling between an artificial atom and a superconducting resonator while keeping the cavity frequency and the atomic frequency invariant. By controlling the time dependence of the external magnetic flux, we show that it is possible to tune the interaction from the extremely weak coupling regime to the ultrastrong coupling one. Using the quantum perturbation theory, we obtain the coupling strength as a function of the external magnetic flux. We also find that our system is remarkably insensitive to the main noises, which shows its reliability in the fields of quantum simulation and quantum computing. In particular, it is worth pointing out that the best performance of our qubit both in terms of tunable coupling and coherence is achieved when the penetrating fluxes through two SQUIDs are in a restricted range near Φ0/2.

Graphical abstract


Quantum Information 


  1. 1.
    D.M. Toyli, A.W. Eddins, S. Boutin, S. Puri, D. Hover, V. Bolkhovsky, W.D. Oliver, A. Blais, I. Siddiqi, Phys. Rev. X 6, 031004 (2016)Google Scholar
  2. 2.
    J.H. Borja Peropadre, G.G. Guerreschi, A. Aspuru-Guzik, Phys. Rev. Lett. 117, 140505 (2016)CrossRefGoogle Scholar
  3. 3.
    L. Zhou, Z.R. Gong, Y.-X. Liu, C.P. Sun, F. Nori, Phys. Rev. Lett. 101, 100501 (2008)ADSCrossRefGoogle Scholar
  4. 4.
    Q.-K. He, W. Zhu, Z.H. Wang, D.L. Zhou, J. Phys. B: At. Mol. Opt. Phys. 50, 145002 (2017)ADSCrossRefGoogle Scholar
  5. 5.
    P. Forn-Daz, J. Garca-Ripoll, B. Peropadre, J.-L. Orgiazzi, M. Yurtalan, R. Belyansky, C. Wilson, A. Lupascu, Nat. Phys. 13, 39 (2017)CrossRefGoogle Scholar
  6. 6.
    P. Forn-Diaz, J. Lisenfeld, D. Marcos, J.J. Garciaripoll, E. Solano, C.J.P.M. Harmans, J.E. Mooij, Phys. Rev. Lett. 105, 237001 (2010)ADSCrossRefGoogle Scholar
  7. 7.
    X. Gu, A.F. Kockum, A. Miranowicz, Y.X. Liu, F. Nori, Phys. Rep. 718–719, 1 (2017)CrossRefGoogle Scholar
  8. 8.
    F. Yoshihara, T. Fuse, S. Ashhab, K. Kakuyanagi, S. Saito, K. Semba, Nat. Phys. 13, 44 (2017)CrossRefGoogle Scholar
  9. 9.
    B. Peropadre, D. Zueco, F. Wulschner, F. Deppe, A. Marx, R. Gross, J.J. Garciaripoll, Phys. Rev. B 87, 134504 (2013)ADSCrossRefGoogle Scholar
  10. 10.
    A. Baust, E. Hoffmann, M. Haeberlein, M.J. Schwarz, P. Eder, E.P. Menzel, K.G. Fedorov, J. Goetz, F. Wulschner, E. Xie, L. Zhong, F. Quijandría, B. Peropadre, Phys. Rev. B 91, 014515 (2015)ADSCrossRefGoogle Scholar
  11. 11.
    F. Wulschner, J. Goetz, F.R. Koessel, E. Hoffmann, A. Baust, P. Eder, M. Fischer, M. Haeberlein, M.J. Schwarz, M. Pernpeintner, EPJ Quantum Technol. 3, 10 (2016)CrossRefGoogle Scholar
  12. 12.
    M.D. Kim, Phys. Rev. B 74, 184501 (2006)ADSCrossRefGoogle Scholar
  13. 13.
    D. Tong, K. Singh, L.C. Kwek, C.H. Oh, Phys. Rev. Lett. 98, 150402 (2007)ADSCrossRefGoogle Scholar
  14. 14.
    J.M. Martinis, K.B. Cooper, R. McDermott, M. Steffen, M. Ansmann, K.D. Osborn, K. Cicak, S. Oh, D.P. Pappas, R.W. Simmonds, C.C. Yu, Phys. Rev. Lett. 95, 10503 (2005)CrossRefGoogle Scholar
  15. 15.
    J.R. Friedman, V. Patel, W. Chen, S.K. Tolpygo, J.E. Lukens, in Nature 406, 43 (2000)ADSCrossRefGoogle Scholar
  16. 16.
    C.H.V. Der Wal, A.C.J.T. Haar, F.K. Wilhelm, R.N. Schouten, C.J.P.M. Harmans, T.P. Orlando, S. Lloyd, J.E. Mooij, Science 290, 773 (2000)ADSCrossRefGoogle Scholar
  17. 17.
    J. Koch, M.Y. Terri, J. Gambetta, A.A. Houck, D. Schuster, J. Majer, A. Blais, M.H. Devoret, S.M. Girvin, R.J. Schoelkopf, Phys. Rev. A 76, 042319 (2007)ADSCrossRefGoogle Scholar
  18. 18.
    R. Barends, J. Kelly, A. Megrant, D. Sank, E. Jeffrey, Y. Chen, Y. Yin, B. Chiaro, J. Mutus, C. Neill, P. O’Malley, P. Roushan, J. Wenner, T.C. White, A.N. Cleland, J.M. Martinis, Phys. Rev. Lett. 111, 080502 (2013)ADSCrossRefGoogle Scholar
  19. 19.
    K. Inomata, T. Yamamoto, P.-M. Billangeon, Y. Nakamura, J.S. Tsai, Phys. Rev. B 86, 140508 (2012)ADSCrossRefGoogle Scholar
  20. 20.
    M. Mariantoni, F. Deppe, A. Marx, R. Gross, F.K. Wilhelm, E. Solano, Phys. Rev. B 78, 104508 (2008)ADSCrossRefGoogle Scholar
  21. 21.
    A.M. van den Brink, A.J. Berkley, M. Yalowsky, New J. Phys. 7, 230 (2005)CrossRefGoogle Scholar
  22. 22.
    B. Peropadre, P. Forn-Daz, E. Solano, J.J. Garca-Ripoll, Phys. Rev. Lett. 105, 023601 (2010)ADSCrossRefGoogle Scholar
  23. 23.
    J.M. Gambetta, A.A. Houck, A. Blais, Phys. Rev. Lett. 106, 030502 (2011)ADSCrossRefGoogle Scholar
  24. 24.
    S. Srinivasan, A. Hoffman, J. Gambetta, A. Houck, Phys. Rev. Lett. 106, 083601 (2011)ADSCrossRefGoogle Scholar
  25. 25.
    D.E. Bruschi, A.R. Lee, I. Fuentes, J. Phys. A: Math. Theor. 46, 165303 (2013)ADSCrossRefGoogle Scholar
  26. 26.
    A. Mezzacapo, L. Lamata, S. Filipp, E. Solano, Phys. Rev. Lett. 113, 050501 (2014)ADSCrossRefGoogle Scholar
  27. 27.
    Y. Lu, S. Chakram, N. Leung, N. Earnest, R.K. Naik, Z. Huang, P. Groszkowski, E. Kapit, J. Koch, D.I. Schuster, Phys. Rev. Lett. 119, 150502 (2017)ADSCrossRefGoogle Scholar
  28. 28.
    T.H. Kyaw, S. Felicetti, G. Romero, E. Solano, L.C. Kwek, Sci. Rep. 5, 8621 (2015)ADSCrossRefGoogle Scholar
  29. 29.
    S. Felicetti, C. Sabn, I. Fuentes, L. Lamata, G. Romero, E. Solano, Phys. Rev. B 92, 064501 (2015)ADSCrossRefGoogle Scholar
  30. 30.
    L. Garcia-Alvarez, S. Felicetti, E. Rico, E. Solano, C. Sabin, Sci. Rep. 7, 657 (2017)ADSCrossRefGoogle Scholar
  31. 31.
    M. Devoret, in Les Houches, Session LXIII 7, 351 (1995)Google Scholar
  32. 32.
    B. Peropadre, D. Zueco, D. Porras, J.J. Garca-Ripoll, Phys. Rev. Lett. 111, 243602 (2013)ADSCrossRefGoogle Scholar
  33. 33.
    J.J. Sakurai, J.J. Napolitano, in Modern Quantum Mechanics, 2nd edn (Addison-Wesley & Pearson, 2011), pp. 285–304Google Scholar
  34. 34.
    D. Braak, Phys. Rev. Lett. 107, 100401 (2011)ADSCrossRefGoogle Scholar
  35. 35.
    G. Ithier, E. Collin, P. Joyez, P. Meeson, D. Vion, D. Esteve, F. Chiarello, A. Shnirman, Y. Makhlin, J. Schriefl, G. Schön, Phys. Rev. B 72, 134519 (2005)ADSCrossRefGoogle Scholar
  36. 36.
    R.J. Schoelkopf, A. Clerk, S. Girvin, K.W. Lehnert, M. Devoret, in Proc. SPIE (International Society for Optics and Photonics, 2003), Vol. 5115, pp. 356–377Google Scholar
  37. 37.
    V. Bouchiat, D. Vion, P. Joyez, D. Esteve, M. Devoret, Phys. Scripta 1998, 165 (1998)CrossRefGoogle Scholar
  38. 38.
    Y. Nakamura, Y.A. Pashkin, J.S. Tsai, Nature 398, 786 (1999)ADSCrossRefGoogle Scholar
  39. 39.
    F. Yoshihara, K. Harrabi, A. Niskanen, Y. Nakamura, J. Tsai, Phys. Rev. Lett. 97, 167001 (2006)ADSCrossRefGoogle Scholar
  40. 40.
    E. Paladino, Y. Galperin, G. Falci, B. Altshuler, Rev. Mod. Phys. 86, 361 (2014)ADSCrossRefGoogle Scholar
  41. 41.
    D. Van Harlingen, T. Robertson, B. Plourde, P. Reichardt, T. Crane, J. Clarke, Phys. Rev. B 70, 064517 (2004)ADSCrossRefGoogle Scholar
  42. 42.
    A.B. Zorin, F.-J. Ahlers, J. Niemeyer, T. Weimann, H. Wolf, V.A. Krupenin, S.V. Lotkhov, Phys. Rev. B 53, 13682 (1996)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Physics, Beijing National Laboratory for Condensed Matter Physics, Chinese Academy of SciencesBeijingP.R. China
  2. 2.School of Physical Sciences, University of Chinese Academy of SciencesBeijingP.R. China
  3. 3.Collaborative Innovation Center of Quantum MatterBeijingP.R. China
  4. 4.Songshan Lake Materials LaboratoryGuangdongP.R. China

Personalised recommendations