Advertisement

Chaos synchronization of coupled nano-quantum cascade lasers with negative optoelectronic feedback

  • Hussein WariedEmail author
Regular Article
  • 32 Downloads

Abstract

In this paper, a theoretical investigation of chaos synchronization in two nano-quantum cascade lasers with delayed negative optoelectronic feedback is presented. Since the spontaneous emission effect is an important factor in a microcavity the rate equations model has been reconsidered to include the Purcell spontaneous emission enhancement factor F and the spontaneous emission factor. It is found that the synchronization takes place under suitable system parameters. The results indicate that the coupling strength, the delay time in the transmitter, and the transmission time between the two lasers have significant effects on the synchronization quality while the stage number and the delay time in receiver have poor effects on the synchronization quality. Also, when the system is a closed-loop or open-loop, synchronization with poor dynamics occurs when the spontaneous emission factor is small while the synchronization happens in the open-loop system only when the spontaneous emission factor is large. Furthermore, when the system is a closed-loop, synchronization occurs when Purcell factor is large while the synchronization happens to the open-loop system of any values for the spontaneous emission factor and Purcell factor.

Graphical abstract

Keywords

Clusters and Nanostructures 

References

  1. 1.
    A. Rostami, H. Rasooli, H. Baghban, Terahertz Technology: Fundamentals and Applications (Springer Science & Business Media, Berlin, Heidelberg, 2010) Google Scholar
  2. 2.
    J. Faist, F. Capasso, D.L. Sivco, C. Sirtori, A.L. Hutchinson, A.Y. Cho, Science 264, 553 (1994) CrossRefGoogle Scholar
  3. 3.
    C. Walther, Low frequency and circuit based quantum cascade lasers, Doctoral dissertation, ETH Zurich, 2011 Google Scholar
  4. 4.
    S.-C. Chan, J.-M. Liu, IEEE J. Quantum Electron. 41, 1142 (2005) CrossRefGoogle Scholar
  5. 5.
    B. Farias, T.P. de Silans, M. Chevrollier, M. Oria, Phys. Rev. Lett. 94, 173902 (2005) CrossRefGoogle Scholar
  6. 6.
    I. Fischer, Y. Liu, P. Davis, Phys. Rev. A 62, 011801 (2000) CrossRefGoogle Scholar
  7. 7.
    S. Hwang, J. Liu, Opt. Commun. 169, 167 (1999) CrossRefGoogle Scholar
  8. 8.
    K. Kusumoto, J. Ohtsubo, Opt. Lett. 27, 989 (2002) CrossRefGoogle Scholar
  9. 9.
    C.H. Lee, S.Y. Shin, Appl. Phys. Lett. 62, 922 (1993) CrossRefGoogle Scholar
  10. 10.
    M. Nizette, T. Erneux, A. Gavrielides, V. Kovanis, T. Simpson, Phys. Rev. E 65, 056610 (2002) CrossRefGoogle Scholar
  11. 11.
    S. Rajesh, V. Nandakumaran, Phys. D 213, 113 (2006) MathSciNetCrossRefGoogle Scholar
  12. 12.
    R. Vicente, S. Tang, J. Mulet, C.R. Mirasso, J.-M. Liu, Phys. Rev. E 73, 047201 (2006) CrossRefGoogle Scholar
  13. 13.
    G.-Q. Xia, Z.-M. Wu, X.-H. Jia, J. Light. Technol. 23, 4296 (2005) CrossRefGoogle Scholar
  14. 14.
    D.M. Kane, K.A. Shore, in Unlocking Dynamical Diversity: Optical Feedback Effects on Semiconductor Lasers, 1st edn. (John Wiley & Sons, NY, 2005), pp. 187–188 Google Scholar
  15. 15.
    F.Y. Lin, J.M. Liu, IEEE J. Quantum Electron. 39, 562 (2003) CrossRefGoogle Scholar
  16. 16.
    J. Ohtsubo, in Semiconductor Lasers: Stability, Instability and Chaos, 3rd edn. (Springer, Berlin, 2012), pp. 447–448 Google Scholar
  17. 17.
    S. Tang, J. Liu, IEEE J. Quantum Electron. 37, 329 (2001) CrossRefGoogle Scholar
  18. 18.
    S. Turovets, J. Dellunde, K. Shore, J. Opt. Soc. Am. B 14, 200 (1997) CrossRefGoogle Scholar
  19. 19.
    A. Uchida, in Optical Communication With Chaotic Lasers: Applications of Nonlinear Dynamics and Synchronization, 1st edn. (John Wiley & Sons, NY, 2012), pp. 237–238 Google Scholar
  20. 20.
    H. Waried, Chin. J. Phys. 56, 1113 (2018) CrossRefGoogle Scholar
  21. 21.
    H. Han, K.A. Shore, IEEE J. Quantum Electron. 52, 11 (2016) CrossRefGoogle Scholar
  22. 22.
    Z.A. Sattar, N.A. Kamel, K.A. Shore, IEEE J. Quantum Electron. 52, 2 (2016) CrossRefGoogle Scholar
  23. 23.
    H. Waried, Phys. Chem. Res. 5, 377 (2017) Google Scholar
  24. 24.
    Y. Todorov, I. Sagnes, I. Abram, C. Minot, Phys. Rev. Lett. 99, 2236 (2007) CrossRefGoogle Scholar
  25. 25.
    C. Wang, F. Grillot, V. Kovanis, J. Even, J. Appl. Phys. 113, 063104 (2013) CrossRefGoogle Scholar
  26. 26.
    H. Waried, Rece. Adva. Elec. Elec. Engi. 11, 167 (2018) Google Scholar
  27. 27.
    P. Kumar, A. Prasad, R. Ghosh, J. Phys. B: At. Mol. Opt. Phys. 41, 135402 (2008) CrossRefGoogle Scholar
  28. 28.
    P. Kumar, F. Grillot, Eur. Phys. J. Special Topics 222, 813 (2013) CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Physics Department, Sciences College, University of Thi-QarNasiriyahIraq

Personalised recommendations