Advertisement

Ab initio calculation of the photoionization cross sections and photoelectron angular distribution parameters of CH4, NH3, H2O and CO

  • Nikolay M. Novikovskiy
  • Victor L. Sukhorukov
  • Anton N. Artemyev
  • Philipp V. Demekhin
Regular Article
  • 20 Downloads
Part of the following topical collections:
  1. Topical Issue: Many Particle Spectroscopy of Atoms, Molecules, Clusters and Surfaces (2018)

Abstract

Photoionization cross sections σnγ(ω) and photoelectron angular distribution parameters βnγ(ω) are systematically computed for the closed-shell molecules CH4, NH3, H2O and CO. Calculations are performed by the single center (SC) method based on the numerical integration of the coupled Hartree-Fock equations for a photoelectron in continuum. In the cases of the core nγ(1s) and valence nγ(2p) molecular orbitals, a good overall agreement between the present theory and experiment available in the literature is obtained. For the subvalence nγ(2s) molecular orbitals, agreement between the theory and available experiment is satisfactory, which can be attributed to an impact of many-electron correlations neglected in the present calculations.

Keywords

Topical issue 

References

  1. 1.
    E. Gatuzz, J. Garca, T.R. Kallman, C. Mendoza, T.W. Gorczyca, Astrophys. J. 800, 29 (2015)ADSCrossRefGoogle Scholar
  2. 2.
    A. Müller, D. Bernhardt, A. Borovik Jr, T. Buhr, J. Hellhund, K. Holste, A.L.D. Kilcoyne, S. Klumpp, M. Martins, S. Ricz, J. Seltmann, Astrophys. J. 836, 166 (2017)ADSCrossRefGoogle Scholar
  3. 3.
    A. Dalgarno, Proc. Phys. Soc. A 65, 663 (1952)ADSCrossRefGoogle Scholar
  4. 4.
    R. Moccia, J. Chem. Phys. 40, 2164 (1964)ADSCrossRefGoogle Scholar
  5. 5.
    V.L. Sukhorukov, V.F. Demekhin, V.A. Yavna, I.D. Petrov, L.A. Demekhina, S.V. Lavrentiev, Coord. Chem. (USSR) 9, 158 (1983)Google Scholar
  6. 6.
    V.L. Sukhorukov, V.A. Yavna, V.F. Demekhin, Bull. Acad. Sci. USSR Phys. 46, 763 (1982)Google Scholar
  7. 7.
    V.L. Sukhorukov, S.V. Lavrentev, V.F. Demekhin, I.D. Petrov, Chem. Phys. (USSR) 3, 359 (1984)Google Scholar
  8. 8.
    S.V. Lavrentev, B.M. Lagutin, M.E. Vasileva, V.L. Sukhorukov, Chem. Phys. (USSR) 7, 187 (1988)Google Scholar
  9. 9.
    S.V. Lavrentev, M.E. Vasileva, I.D. Petrov, V.L. Sukhorukov, Opt. Spectrosc. (USSR) 69, 186 (1990)ADSGoogle Scholar
  10. 10.
    P. Demekhin, D. Omel’yanenko, B. Lagutin, V. Sukhorukov, L. Werner, A. Ehresmann, K.H. Schartner, H. Schmoranzer, Opt. Spectrosc. 102, 318 (2007)ADSCrossRefGoogle Scholar
  11. 11.
    P.V. Demekhin, A. Ehresmann, V.L. Sukhorukov, J. Chem. Phys. 134, 024113 (2011)ADSCrossRefGoogle Scholar
  12. 12.
    S.A. Galitskiy, A.N. Artemyev, K. Jankala, B.M. Lagutin, P.V. Demekhin, J. Chem. Phys. 142, 034306 (2015)ADSCrossRefGoogle Scholar
  13. 13.
    P.V. Demekhin, I.D. Petrov, V.L. Sukhorukov, W. Kielich, P. Reiss, R. Hentges, I. Haar, H. Schmoranzer, A. Ehresmann, Phys. Rev. A 80, 063425 (2009)ADSCrossRefGoogle Scholar
  14. 14.
    P.V. Demekhin, I.D. Petrov, V.L. Sukhorukov, W. Kielich, A. Knie, H. Schmoranzer, A. Ehresmann, Phys. Rev. Lett. 104, 243001 (2010)ADSCrossRefGoogle Scholar
  15. 15.
    P.V. Demekhin, I.D. Petrov, V.L. Sukhorukov, W. Kielich, P. Reiss, R. Hentges, I. Haar, H. Schmoranzer, A. Ehresmann, Phys. Rev. A 81, 069902 (2010)ADSCrossRefGoogle Scholar
  16. 16.
    P.V. Demekhin, I.D. Petrov, T. Tanaka, M. Hoshino, H. Tanaka, K. Ueda, W. Kielich, A. Ehresmann, J. Phys. B: At. Mol. Opt. Phys. 43, 065102 (2010)ADSCrossRefGoogle Scholar
  17. 17.
    P.V. Demekhin, B.M. Lagutin, I.D. Petrov, Phys. Rev. A 85, 023416 (2012)ADSCrossRefGoogle Scholar
  18. 18.
    A. Knie, M. Ilchen, P. Schmidt, P. Reiß, C. Ozga, B. Kambs, A. Hans, N. Müglich, S.A. Galitskiy, L. Glaser, P. Walter, Phys. Rev. A 90, 013416 (2014)ADSCrossRefGoogle Scholar
  19. 19.
    E. Antonsson, M. Patanen, C. Nicolas, S. Benkoula, J.J. Neville, V.L. Sukhorukov, J.D. Bozek, P.V. Demekhin, C. Miron, Phys. Rev. A 92, 042506 (2015)ADSCrossRefGoogle Scholar
  20. 20.
    A. Knie, M. Patanen, A. Hans, I.D. Petrov, J.D. Bozek, A. Ehresmann, P.V. Demekhin, Phys. Rev. Lett. 116, 193002 (2016)ADSCrossRefGoogle Scholar
  21. 21.
    S. Nandi, C. Nicolas, A.N. Artemyev, N.M. Novikovskiy, C. Miron, J.D. Bozek, P.V. Demekhin, Phys. Rev. A 96, 052501 (2017)ADSCrossRefGoogle Scholar
  22. 22.
    I. Cacelli, R. Moccia, V. Carravetta, Chem. Phys. 90, 313 (1984)CrossRefGoogle Scholar
  23. 23.
    I. Cacelli, V. Carravetta, R. Moccia, J. Phys. B: At. Mol. Phys. 18, 1375 (1985)ADSCrossRefGoogle Scholar
  24. 24.
    I. Cacelli, V. Carravetta, R. Moccia, J. Chem. Phys. 97, 320 (1992)ADSCrossRefGoogle Scholar
  25. 25.
    I. Cacelli, V. Carravetta, R. Moccia, Chem. Phys. 184, 213 (1994)CrossRefGoogle Scholar
  26. 26.
    I. Cacelli, V. Carravetta, J. Phys. B: At. Mol. Opt. Phys. 29, 3363 (1996)ADSCrossRefGoogle Scholar
  27. 27.
    M. Ruberti, R. Yun, K. Gokhberg, S. Kopelke, L. Cederbaum, F. Tarantelli, V. Averbukh, J. Chem. Phys. 139, 144107 (2013)ADSCrossRefGoogle Scholar
  28. 28.
    M. Ruberti, R. Yun, K. Gokhberg, S. Kopelke, L. Cederbaum, F. Tarantelli, V. Averbukh, J. Chem. Phys. 140, 184107 (2014)ADSCrossRefGoogle Scholar
  29. 29.
    I. Powis, J. Chem. Phys. 112, 301 (2000)ADSCrossRefGoogle Scholar
  30. 30.
    D. Holland, I. Powis, G. Örwall, L. Karlsson, W. von Niessen, Chem. Phys. 326, 535 (2006)CrossRefGoogle Scholar
  31. 31.
    M. Stener, G. De Alti, P. Decleva, Theor. Chem. Acc. 101, 247 (1999)CrossRefGoogle Scholar
  32. 32.
    M. Stener, P. Decleva, J. Chem. Phys. 112, 10871 (2000)ADSCrossRefGoogle Scholar
  33. 33.
    M. Stener, P. Decleva, I. Cacelli, R. Moccia, R. Montuoro, Chem. Phys. 272, 15 (2001)CrossRefGoogle Scholar
  34. 34.
    M. Stener, G. Fronzoni, D. Toffoli, P. Decleva, Chem. Phys. 282, 337 (2002)CrossRefGoogle Scholar
  35. 35.
    M. Stener, G. Fronzoni, P. Decleva, Chem. Phys. Lett. 351, 469 (2002)ADSCrossRefGoogle Scholar
  36. 36.
    W. Kohn, L.J. Sham, Phys. Rev. 140, A1133 (1965)ADSCrossRefGoogle Scholar
  37. 37.
    M. Stener, G. Fronzoni, P. Decleva, J. Chem. Phys. 122, 234301 (2005)ADSCrossRefGoogle Scholar
  38. 38.
    M. Stener, G. Fronzoni, P. Decleva, Chem. Phys. 361, 49 (2009)CrossRefGoogle Scholar
  39. 39.
    A. Schweig, W. Thiel, J. Chem. Phys. 60, 951 (1974)ADSCrossRefGoogle Scholar
  40. 40.
    J.T.J. Huang, F.O. Ellison, J. Electron Spectrosc. Relat. Phenom. 4, 233 (1974)CrossRefGoogle Scholar
  41. 41.
    J.T.J. Huang, F.O. Ellison, Chem. Phys. Lett. 29, 565 (1974)ADSCrossRefGoogle Scholar
  42. 42.
    A. Schweig, W. Thiel, J. Electron Spectrosc. Relat. Phenom. 3, 27 (1974)CrossRefGoogle Scholar
  43. 43.
    M. Dewar, A. Komornicki, W. Thiel, A. Schweig, Chem. Phys. Lett. 31, 286 (1975)ADSCrossRefGoogle Scholar
  44. 44.
    V.L. Sukhorukov, I.D. Petrov, V.F. Demekhin, Opt. Spectrosc. 58, 836 (1985)ADSGoogle Scholar
  45. 45.
    V. Sukhorukov, B. Lagutin, H. Schmoranzer, I. Petrov, K.H. Schartner, Phys. Lett. A 169, 445 (1992)ADSCrossRefGoogle Scholar
  46. 46.
    P.V. Demekhin, I.D. Petrov, B.M. Lagutin, V.L. Sukhorukov, F. Vollweiler, S. Klumpp, A. Ehresmann, K.H. Schartner, H. Schmoranzer, J. Phys. B: At. Mol. Opt. Phys. 38, 3129 (2005)ADSCrossRefGoogle Scholar
  47. 47.
    V.L. Sukhorukov, I.D. Petrov, B.M. Lagutin, H. Schmoranzer, W. Kielich, P.V. Demekhin, A. Ehresmann, Eur. Phys. J. D 59, 151 (2010)ADSCrossRefGoogle Scholar
  48. 48.
    V. Sukhorukov, I. Petrov, B. Lagutin, A. Ehresmann, K.H. Schartner, H. Schmoranzer, Phys. Rep. 786, 1 (2019)ADSCrossRefGoogle Scholar
  49. 49.
    M.W. Schmidt, K.K. Baldridge, J.A. Boatz, S.T. Elbert, M.S. Gordon, J.H. Jensen, S. Koseki, N. Matsunaga, K.A. Nguyen, S. Su, T.L. Windus, M. Dupuis, J.A. Montgomery, J. Comput. Chem. 14, 1347 (1993)CrossRefGoogle Scholar
  50. 50.
    Y.-K. Kim, K.K. Irikura, M.E. Rudd, M.A. Ali, P.M. Stone, J. Chang, J.S. Coursey, R.A. Dragoset, A.R. Kishore, K.J. Olsen, A.M. Sansonetti, G.G. Wiersma, D.S. Zucker, M.A. Zucker, Electron-Impact Ionization Cross Section for Ionization and Excitation Database (version 3.0) (National Institute of Standards and Technology, Gaithersburg, MD, 2004) [Online]Google Scholar
  51. 51.
    E.G. Berezhko, N.M. Kabachnik, J. Phys. B: At. Mol. Phys. 102467 (1977)ADSCrossRefGoogle Scholar
  52. 52.
    V. Schmidt, Rep. Prog. Phys. 55, 1483 (1992) ADSCrossRefGoogle Scholar
  53. 53.
    A.P. Lukirskii, I.A. Brytov, T.M. Zimkina, Opt. Spektrosk. 17, 438 (1964) Eng. Transl. p. 234Google Scholar
  54. 54.
    B. Henke, E. Gullikson, J. Davis, At. Data Nucl. Data Tables 54, 181 (1993)ADSCrossRefGoogle Scholar
  55. 55.
    H.M. Köppe, B.S. Itchkawitz, A.L.D. Kilcoyne, J. Feldhaus, B. Kempgens, A. Kivimäki, M. Neeb, A.M. Bradshaw, Phys. Rev. A 53, 4120 (1996)ADSCrossRefGoogle Scholar
  56. 56.
    M. Van der Wiel, W. Stoll, A. Hamnett, C. Brion, Chem. Phys. Lett. 37, 240 (1976)ADSCrossRefGoogle Scholar
  57. 57.
    C. Backx, M.J. Van der Wiel, J. Phys. B: At. Mol. Phys. 8, 3020 (1975)ADSCrossRefGoogle Scholar
  58. 58.
    K. Tan, C. Brion, P.V. der Leeuw, M. van der Wiel, Chem. Phys. 29, 299 (1978)CrossRefGoogle Scholar
  59. 59.
    M.S. Banna, B.H. McQuaide, R. Malutzki, V. Schmidt, J. Chem. Phys. 84, 4739 (1986)ADSCrossRefGoogle Scholar
  60. 60.
    G.R. Wight, M.J.V. der Wiel, C.E. Brion, J. Phys. B: At. Mol. Phys. 10, 1863 (1977)ADSCrossRefGoogle Scholar
  61. 61.
    M. Banna, H. Kossmann, V. Schmidt, Chem. Phys. 114, 157 (1987)CrossRefGoogle Scholar
  62. 62.
    C. Brion, A. Hamnett, G. Wight, M.V. der Wiel, J. Electron Spectrosc. Relat. Phenom. 12, 323 (1977)CrossRefGoogle Scholar
  63. 63.
    N.M. Novikovskiy, D.V. Rezvan, I.D. Petrov, B.M. Lagutin, P.V. Demekhin, V.L. Sukhorukov, Eur. Phys. J. D (submitted).Google Scholar
  64. 64.
    J.W. Rabalais, T.P. Debies, J.L. Berkosky, J.J. Huang, F.O. Ellison, J. Chem. Phys. 61, 516 (1974)ADSCrossRefGoogle Scholar
  65. 65.
    M. Rosi, A. Sgamellotti, F. Tarantelli, V. Andreev, M. Gofman, V. Nefedov, J. Electron Spectrosc. Relat. Phenom. 41, 439 (1986)CrossRefGoogle Scholar
  66. 66.
    A.P.P. Natalense, L.M. Brescansin, R.R. Lucchese, Phys. Rev. A 68, 032701 (2003)ADSCrossRefGoogle Scholar
  67. 67.
    E. Plésiat, P. Decleva, F. Martín, Open Phys. 11, 1157 (2013)ADSCrossRefGoogle Scholar
  68. 68.
    C.M. Truesdale, S. Southworth, P.H. Kobrin, D.W. Lindle, G. Thornton, D.A. Shirley, J. Chem. Phys. 76, 860 (1982)ADSCrossRefGoogle Scholar
  69. 69.
    E.W. Plummer, T. Gustafsson, W. Gudat, D.E. Eastman, Phys. Rev. A 15, 2339 (1977)ADSCrossRefGoogle Scholar
  70. 70.
    G.R. Wight, M.J.V. der Wiel, C.E. Brion, J. Phys. B: At. Mol. Phys. 9, 675 (1976)ADSCrossRefGoogle Scholar
  71. 71.
    G.V. Marr, J.M. Morton, R.M. Holmes, D.G. McCoy, J. Phys. B: At. Mol. Phys. 12, 43 (1979)ADSCrossRefGoogle Scholar
  72. 72.
    U. Becker, D.A. Shirley, in VUV and Soft X-Ray Photoionization, Physics of atoms and molecules, 1st ed., (Plenum Press, New York and London, 1996), p. 669Google Scholar

Copyright information

© EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Nikolay M. Novikovskiy
    • 1
  • Victor L. Sukhorukov
    • 1
    • 2
  • Anton N. Artemyev
    • 2
  • Philipp V. Demekhin
    • 2
  1. 1.Institute of Physics, Southern Federal UniversityRostov-on-DonRussia
  2. 2.Institute of Physics and Center for Interdisciplinary Nanostructure Science and Technology (CINSaT), University of KasselKasselGermany

Personalised recommendations