Electron capture and loss of O+ projectile in collision with water near the Bragg Peak Energies

  • Vitor Oliveira
  • Anderson Herbert
  • Antonio C. F. SantosEmail author
  • Karoly Tőkési
Regular Article
Part of the following topical collections:
  1. Topical Issue: Many Particle Spectroscopy of Atoms, Molecules, Clusters and Surfaces (2018)


The combined experimental and theoretical works of the study of the absolute single and double electron loss (stripping) and single and double electron capture cross sections for 0.2–1.2 MeV O+ projectiles colliding with water molecule are presented. In order to mimic the experimental observation we performed three, four and five-body classical trajectory Monte Carlo calculations. In our model the O+ projectile is either one, (two or three) particle(s) depending on the model used (3, 4 or 5 body model, respectively) and the water target is taken into account as two virtual particles. We found that the calculated cross sections are in agreement with the present experimental data. Moreover, the similarity of the present data with an isoelectronic system, the methane molecule allows us to draw a common curve through both data sets.

Graphical abstract


Topical issue 


  1. 1.
    Z. Deng, I. Bald, E. Illenberger, M.A. Huels, Phys. Rev. Lett. 95, 153201 (2005)ADSCrossRefGoogle Scholar
  2. 2.
    C. Kurz, A. Mairani, K. Parodi, Phys. Med. Biol. 57, 5017 (2012)CrossRefGoogle Scholar
  3. 3.
    M.M. Sant’Anna, F. Zappa, A.C.F. Santos, L.F.S. Coelho, W. Wolff, A.L.F. Barros, N.V. de Castro-Faria, Phys. Rev. A 74, 022701 (2006)ADSCrossRefGoogle Scholar
  4. 4.
    A.C.F. Santos, W. Wolff, M.M. Santanna, G.M. Sigaudand, R.D. DuBois, J. Phys. B: At., Mol. Opt. Phys. 46, 075202 (2013)ADSCrossRefGoogle Scholar
  5. 5.
    R.E. Olson, C.O. Reinhold, D.R. Schultz, in High-energy ion-atom collisions, Proceedings of the 4th Workshop on High-Energy Ion-Atom Collision Processes, Debrecen, Hungary, 17–19 September 1990, edited by D. Berényi, G. Hock, Lecture Notes in Physics (1991), Vol. 376, p. 69Google Scholar
  6. 6.
    R. Abrines, I.C. Percival, Proc. Phys. Soc. London 88, 861 (1966)ADSCrossRefGoogle Scholar
  7. 7.
    R.E. Olson, A. Salop, Phys. Rev. A 16, 531 (1977)ADSCrossRefGoogle Scholar
  8. 8.
    K. Tökési, G. Hock, Nucl. Instrum. Methods Phys. Res. B 86, 201 (1994)ADSCrossRefGoogle Scholar
  9. 9.
    K. Tökési, G. Hock, J. Phys. B 29, 119 (1996)CrossRefGoogle Scholar
  10. 10.
    K. Tökési, Á. Kövér, Nucl. Instrum. Methods Phys. Res. B 154, 259 (1999)CrossRefGoogle Scholar
  11. 11.
    K. Tökési, Á. Kövér, J. Phys. B 33, 3067 (2000)CrossRefGoogle Scholar
  12. 12.
    R.L. Watson, Y. Peng, V. Horvat, G.J. Kim, R.E. Olson, Phys. Rev. A 67, 022706 (2003)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Vitor Oliveira
    • 1
  • Anderson Herbert
    • 1
  • Antonio C. F. Santos
    • 1
    Email author
  • Karoly Tőkési
    • 2
    • 3
  1. 1.Instituto de Física, Universidade Federal do Rio de JaneiroRio de JaneiroBrazil
  2. 2.Institute for Nuclear Research, Hungarian Academy of Sciences (Atomki)DebrecenHungary
  3. 3.ELI-ALPS, ELI-HU Non-profit Ltd.SzegedHungary

Personalised recommendations