Electron number density measurements from the frequency shift of a plasma defect state in a one-dimensional photonic crystal

  • David Z. PaiEmail author
  • Fabio Righetti
  • Benjamin C. Wang
  • David R. Biggs
  • Mark A. CappelliEmail author
Regular Article


We describe the use of a plasma-functionalized vacancy defect in a one-dimensional microwave photonic crystal to experimentally measure the electron number density of glow discharges at 5–40 torr. The photonic crystal consists of spaced alumina plates with a built-in void defect that breaks the repeating symmetry of the layers, resulting in narrow defect transmission peaks within relatively deep bandgaps. We exploit the sensitivity of the defect transmission at 28 GHz to varying plasma density to measure electron number densities as low as 2 × 109 cm−3. Defect energy shifts are proportional to plasma density, in reasonable agreement with theoretical predictions of photonic crystal performance. At higher discharge current densities and discharge pressure, we see a departure from the model predictions, largely attributable to the heating of the alumina structure, causing expansion and changes in the lattice parameter that counteract the effect of the increased plasma density on the defect state frequency.

Graphical abstract


Plasma Physics 


  1. 1.
    A.Y. Nikiforov, C. Leys, M. Gonzalez, J. Walsh, Plasma Sources Sci. Technol. 24, 034001 (2015)ADSCrossRefGoogle Scholar
  2. 2.
    S. Hassaballa, K. Tomita, Y.K. Kim, K. Uchino, H. Hatanaka, Y.M. Kim, C.H. Park, K. Muraoka, Jpn. J. Appl. Phys. 44, L442 (2005)ADSCrossRefGoogle Scholar
  3. 3.
    K. Urabe, H. Muneoka, S. Stauss, K. Terashima, Plasma Sources Sci. Technol. 23, 064007 (2014)ADSCrossRefGoogle Scholar
  4. 4.
    X.P. Lu, M. Laroussi, Appl. Phys. Lett. 92, 051501 (2008)ADSCrossRefGoogle Scholar
  5. 5.
    S. Muller, D. Luggenholscher, U. Czarnetzki, J. Phys. D: Appl. Phys. 44, 165202 (2011)ADSCrossRefGoogle Scholar
  6. 6.
    H.R. Griem, Principles of Plasma Spectroscopy (Cambridge University Press, Cambridge, 1997)Google Scholar
  7. 7.
    T. Orrière, E. Moreau, D.Z. Pai, J. Phys. D: Appl. Phys. 51, 494002 (2018)CrossRefGoogle Scholar
  8. 8.
    D.M. Packan, Repetitive nanosecond glow discharge in atmospheric pressure air, Ph.D. thesis, Stanford University, 2003Google Scholar
  9. 9.
    Y. Ito, O. Sakai, K. Tachibana, Plasma Sources Sci. Technol. 19, 025006 (2010)ADSCrossRefGoogle Scholar
  10. 10.
    A. Shashurin, M. Shneider, A. Dogariu, R. Miles, M. Keidar, Appl. Phys. Lett. 96, 171502 (2010)ADSCrossRefGoogle Scholar
  11. 11.
    B. Wang, M. Cappelli, Appl. Phys. Lett. 107, 171107 (2015)ADSCrossRefGoogle Scholar
  12. 12.
    O. Sakai, T. Sakaguchi, T. Naito, D.-S. Lee, K. Tachibana, Plasma Phys. Control. Fusion 49, B453 (2007)ADSCrossRefGoogle Scholar
  13. 13.
    J. Faith, S. Kuo, J. Huang, Phys. Rev. E 55, 1843 (1997)ADSCrossRefGoogle Scholar
  14. 14.
    V. Arkhipenko, T. Callegari, L. Simonchik, J. Sokoloff, M. Usachonak, J. Appl. Phys. 116, 123302 (2014)ADSCrossRefGoogle Scholar
  15. 15.
    V. Babitski, T. Callegari, L. Simonchik, J. Sokoloff, M. Usachonak, J. Appl. Phys. 122, 083302 (2017)ADSCrossRefGoogle Scholar
  16. 16.
    S.J. Orfanidis, Electromagnetic Waves and Antennas (Rutgers University New Brunswick, NJ, 2002)Google Scholar
  17. 17.
    D.R. Biggs, M.A. Cappelli, Appl. Phys. Lett. 109, 124103 (2016)ADSCrossRefGoogle Scholar
  18. 18.
    M.N. Afsar, K.J. Button, Proc. IEEE 73, 131 (1985)CrossRefGoogle Scholar
  19. 19.
    SIGLO database, Retrieved on January 19, 2018
  20. 20.
    G. Hagelaar, L. Pitchford, Plasma Sources Sci. Technol. 14, 722 (2005)ADSCrossRefGoogle Scholar
  21. 21.
    Y.P. Raizer, Gas Discharge Physics (Springer, Berlin, 1991)Google Scholar
  22. 22.
    K. Takahashi, K. Miyamoto, J. Phys.: Conf. Ser. 441, 012011 (2013)Google Scholar
  23. 23.
    J.D. Joannopoulos, S.G. Johnson, J.N. Winn, R.D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton University Press, 2011)Google Scholar

Copyright information

© EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institut Pprime (CNRS UPR 3346–Université de Poitiers–ENSMA)Chasseneuil FuturoscopeFrance
  2. 2.Stanford Plasma Physics Laboratory, Department of Mechanical Engineering, Stanford UniversityStanfordUSA

Personalised recommendations