Advertisement

Optimization and influence of multi-hollow surface dielectric barrier discharge plasma operating conditions on the physical quality of peanut

  • Gebremedhin GebremariamEmail author
  • Shimelis Admassu
  • Tarekegn Berhanu
  • Zlata Tučeková
  • Richard Krumpolec
  • Mirko Černák
Regular Article
  • 14 Downloads

Abstract

An experiment was conducted to investigate the effects of atmospheric pressure plasma generated by multi-hollow surface dielectric barrier discharges on physical quality of peanut (Arachis Hypogea L). Multi-hollow surface dielectric barrier discharge is a novel plasma device applicable in food industry applications due to the capacity of the generated plasma to treat the surface of food without changing the quality. Response surface methodology was used to optimize the plasma treatment for surface treatment as raw peanut forms over a range of power (10–40 W), air flow rate (0.5–20 L/min) and time (1–15 min). The weight loss, hardness, contact angle, color parameters, microstructure, and sensory quality evaluation were evaluated during plasma treatments and modeled by response surface methodology and compared the means. Second order polynomial model adequately described the plasma treated experimental data except for sensory attributes with an insignificant lack of fit (p > 0.05). The result revealed that extreme conditions caused a decrease in L*,b*, hardness, contact angle, increased weight loss, color change and changed the microstructure of the treated peanuts.

Graphical abstract

Keywords

Plasma Physics 

References

  1. 1.
    D.J. Bertioli, G. Seijo, F.O. Freitas, J.F. Valls, S.C. Leal-Bertioli, M.C. Moretzsohn, Plant Genet. Resour. 9 (2011) 134.CrossRefGoogle Scholar
  2. 2.
    J. Wijnands, J. Biersteker, E. Van Loo, Oilseeds Business Opportunities in Ethiopia 2009 (Wageningen University & Research, 2009)Google Scholar
  3. 3.
    C. Sarvamangala, M. Gowda, R. Varshney, Field Crops Res. 122, 49 (2011)CrossRefGoogle Scholar
  4. 4.
    A. Chala, A. Mohammed, A. Ayalew, H. Skinnes, Food Control 30, 602 (2013)CrossRefGoogle Scholar
  5. 5.
    N. Misra, S. Kaur, B.K. Tiwari, A. Kaur, N. Singh, P. Cullen, Food Hydrocolloids 44, 115 (2015)CrossRefGoogle Scholar
  6. 6.
    G. Fridman, G. Friedman, A. Gutsol, A.B. Shekhter, V.N. Vasilets, A. Fridman, Plasma Processes Polym. 5, 503 (2008)CrossRefGoogle Scholar
  7. 7.
    N. Misra, B. Tiwari, K. Raghavarao, P. Cullen, Food Eng. Rev. 3, 159 (2011)CrossRefGoogle Scholar
  8. 8.
    H. Miaoand, G. Yun, Appl. Surf. Sci. 257, 7065 (2011)ADSCrossRefGoogle Scholar
  9. 9.
    J. Pinelaand, I.C. Ferreira, Crit. Rev. Food Sci. Nutr. 57, 2095 (2017)CrossRefGoogle Scholar
  10. 10.
    A. Fernandez, E. Noriega, A. Thompson, Food Microbiol. 33, 24 (2013)CrossRefGoogle Scholar
  11. 11.
    B. Ramos, F. Miller, T.R. Brandão, P. Teixeira, C.L. Silva, Innovative Food Sci. Emerg. Technol. 20, 1 (2013)CrossRefGoogle Scholar
  12. 12.
    R. Thirumdas, R. Deshmukh, U. Annapure, Innovative Food Sci. Emerg. Technol. 31, 83 (2015)CrossRefGoogle Scholar
  13. 13.
    B.G. Dasan, M. Mutlu, I.H. Boyaci, Int. J. Food Microbiol. 216, 50 (2016)CrossRefGoogle Scholar
  14. 14.
    P. Basaranand, Ü. Akhan, Innovative Food Sci. Emerg. Technol. 11, 113 (2010)CrossRefGoogle Scholar
  15. 15.
    P. Basaran, N. Basaran-Akgul, L. Oksuz, Food Microbiol. 25, 626 (2008)CrossRefGoogle Scholar
  16. 16.
    C. Hertwig, A. Leslie, N. Meneses, K. Reineke, C. Rauh, O. Schlüter, Innovative Food Sci. Emerg. Technol. 44, 242 (2017)CrossRefGoogle Scholar
  17. 17.
    M. Korachi, F. Ozen, N. Aslan, L. Vannini, M.E. Guerzoni, D. Gottardi, F.Y. Ekinci, Int. Dairy J. 42, 64 (2015)CrossRefGoogle Scholar
  18. 18.
    U. Schnabel, R. Niquet, O. Schlüter, H. Gniffke, J. Ehlbeck, J. Food Process. Preserv. 39, 653 (2015)CrossRefGoogle Scholar
  19. 19.
    B. Kim, H. Yun, S. Jung, Y. Jung, H. Jung, W. Choe, C. Jo, Food Microbiol. 28, 9 (2011)CrossRefGoogle Scholar
  20. 20.
    H.-J. Kim, H.I. Yong, S. Park, W. Choe, C. Jo, Curr. Appl. Phys. 13, 1420 (2013)ADSCrossRefGoogle Scholar
  21. 21.
    J.-S. Kim, E.-J. Lee, E.H. Choi, Y.-J. Kim, Innovative Food Sci. Emerg. Technol. 22, 124 (2014)CrossRefGoogle Scholar
  22. 22.
    C. Hertwig, K. Reineke, J. Ehlbeck, B. Erdoğdu, C. Rauh, O. Schlüter, J. Food Eng. 167, 12 (2015)CrossRefGoogle Scholar
  23. 23.
    C. Hertwig, K. Reineke, J. Ehlbeck, D. Knorr, O. Schlüter, Food Control 55, 221 (2015)CrossRefGoogle Scholar
  24. 24.
    H. Gan, R. Karim, S. Muhammad, J. Bakar, D. Hashim, R.A. Rahman, LWT-Food Sci. Technol. 40, 611 (2007)CrossRefGoogle Scholar
  25. 25.
    T. Kahyaoglu, LWT-Food Sci. Technol. 41, 26 (2008)CrossRefGoogle Scholar
  26. 26.
    M. Šimunek, A. Režek Jambrak, M. Petrović, H. Juretić, N. Major, Z. Herceg, M. Hruškar, T. Vukušić, Food Technol. Biotechnol. 51, 101 (2013)Google Scholar
  27. 27.
    K.-S. Younand, H.-S. Chung, LWT-Food Sci. Technol. 46, 305 (2012)CrossRefGoogle Scholar
  28. 28.
    T. Homola, R. Krumpolec, M. Zemánek, J. Kelar, P. Synek, T. Hoder, M. Černák, Plasma Chem. Plasma Process. 37, 1149 (2017)CrossRefGoogle Scholar
  29. 29.
    R.K. Raigar, R. Upadhyay, H.N. Mishra, J. Food Sci. Technol. 54, 2145 (2017)CrossRefGoogle Scholar
  30. 30.
    V. Štĕpánová, J. Kelar, P. Slavček, S. Chlupová, M. Stupavská, J. Jurmanová, M. Černák, Int. J. Adhes. Adhes. 77, 198 (2017)CrossRefGoogle Scholar
  31. 31.
    B.P. Khanal, M. Knoche, S. Bußler, O. Schlüter, Planta 240, 891 (2014)CrossRefGoogle Scholar
  32. 32.
    F. Grzegorzewski, S. Rohn, L.W. Kroh, M. Geyer, O. Schlüter, Food Chem. 122, 1145 (2010)CrossRefGoogle Scholar
  33. 33.
    J.-J. Zou, C.-J. Liu, B. Eliasson, Carbohydr. Polym. 55, 23 (2004)CrossRefGoogle Scholar
  34. 34.
    H.H. Chen, Y.K. Chen, H.C. Chang, Food Chem. 135, 74 (2012)CrossRefGoogle Scholar
  35. 35.
    E. Eserand, H. Ekiz, Int. Food Res. J. 23, 2130 (2016)Google Scholar
  36. 36.
    P. Leelayuthsoontornand, A. Thipayarat, Food Chem. 96, 606 (2006)CrossRefGoogle Scholar
  37. 37.
    D. Yan, J. Jones, X. Yuan, X. Xu, J. Sheng, J.M. Lee, G. Ma, Q. Yu, J. Biomed. Mater. Res. Part A 101, 963 (2013)CrossRefGoogle Scholar
  38. 38.
    L. Ling, L. Jiangang, S. Minchong, Z. Chunlei, D. Yuanhua, Sci. Rep. 5, 13033 (2015)ADSCrossRefGoogle Scholar
  39. 39.
    M. Maskan, J. Food Eng. 48, 169 (2001)CrossRefGoogle Scholar
  40. 40.
    H.-J. Lee, H.-P. Song, H.-S. Jung, W.-H. Choe, J.-S. Ham, J.-H. Lee, C.-R. Jo, Korean J. Food Sci. Anim. Res. 32, 561 (2012)CrossRefGoogle Scholar
  41. 41.
    A. Fröhling, J. Durek, U. Schnabel, J. Ehlbeck, J. Bolling, O. Schlüter, Innovative Food Sci. Emerg. Technol. 16, 381 (2012)CrossRefGoogle Scholar
  42. 42.
    B.A. Niemiraand, J. Sites, J. Food Prot. 71, 1357 (2008)CrossRefGoogle Scholar
  43. 43.
    S.Y. Moon, D. Kim, B. Gweon, W. Choe, H. Song, C. Jo, Thin Solid Films 517, 4272 (2009)ADSCrossRefGoogle Scholar
  44. 44.
    L. Ragni, A. Berardinelli, L. Vannini, C. Montanari, F. Sirri, M.E. Guerzoni, A. Guarnieri, J. Food Eng. 100, 125 (2010)CrossRefGoogle Scholar

Copyright information

© EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Gebremedhin Gebremariam
    • 1
    • 2
    Email author
  • Shimelis Admassu
    • 2
  • Tarekegn Berhanu
    • 3
  • Zlata Tučeková
    • 4
  • Richard Krumpolec
    • 4
  • Mirko Černák
    • 4
  1. 1.Department of Food Process Engineering and Postharvest TechnologyAmbo UniversityAmboEthiopia
  2. 2.School of Chemical and Bioengineering, Addis Ababa Institute of TechnologyAddis AbabaEthiopia
  3. 3.Addis Ababa Science and Technology UniversityAddis AbabaEthiopia
  4. 4.R&D Center for Low-Cost Plasma and Nanotechnology Surface Modifications (CEPLANT), Department of Physical Electronics, Faculty of Science, Masaryk UniversityBrnoCzech Republic

Personalised recommendations