Advertisement

Positivity violations of the density operator in the Caldeira-Leggett master equation

  • Gábor Homa
  • József Zsolt BernádEmail author
  • László Lisztes
Regular Article
  • 14 Downloads

Abstract

The Caldeira-Leggett master equation as an example of Markovian master equation without Lindblad form is investigated for mathematical consistency. We explore situations both analytically and numerically where the positivity violations of the density operator occur. We reinforce some known knowledge about this problem but also find new surprising cases. Our analytical results are based on the full solution of the Caldeira-Leggett master equation obtained via the method of characteristics. The preservation of positivity is mainly investigated with the help of the density operator’s purity and we give also some numerical results about the violation of the Robertson-Schrödinger uncertainty relation.

Graphical abstract

Keywords

Quantum Information 

References

  1. 1.
    J. von Neumann, Mathematische Grundlagen der Quantenmechanik (Springer-Verlag, Berlin, 1932) Google Scholar
  2. 2.
    V. Gorini, A. Kossakowski, E.C.G. Sudarshan, J. Math. Phys. 17, 821 (1976) ADSCrossRefGoogle Scholar
  3. 3.
    G. Lindblad, Comm. Math. Phys. 48, 119 (1976) ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    A.O. Caldeira, A.J. Leggett, Ann. Phys. (N.Y.) 149, 374 (1983) ADSCrossRefGoogle Scholar
  5. 5.
    A.O. Caldeira, A.J. Leggett, Physica A 121, 587 (1983) ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    H. Spohn, Rev. Mod. Phys. 52, 569 (1980) ADSCrossRefGoogle Scholar
  7. 7.
    P. Talkner, Ann. Phys. 167, 390 (1986) ADSCrossRefGoogle Scholar
  8. 8.
    D. Kohen, C.C. Marston, D.J. Tannor, J. Chem. Phys. 107, 5236 (1997) ADSCrossRefGoogle Scholar
  9. 9.
    K. Kraus, Ann. Phys. 64, 311 (1971) ADSCrossRefGoogle Scholar
  10. 10.
    H.-P. Breuer, F. Petruccione, The theory of open quantum systems (Oxford University Press, Oxford, 2002) Google Scholar
  11. 11.
    G. Lindblad, Rep. Math. Phys. 10, 393 (1976) ADSCrossRefGoogle Scholar
  12. 12.
    L. Diósi, Physica A 199, 517 (1993) ADSCrossRefGoogle Scholar
  13. 13.
    H. Dekker, Phys. Rep. 80, 1 (1981) ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    A. Sandulescu, H. Scutaru, Ann. Phys. (N.Y.) 173, 277 (1987) ADSCrossRefGoogle Scholar
  15. 15.
    L. Diósi, Europhys. Lett. 22, 1 (1993) ADSCrossRefGoogle Scholar
  16. 16.
    J.G. Peixoto de Faria, M.C. Nemes, J. Phys. A: Math. Gen. 31, 7095 (1998) ADSCrossRefGoogle Scholar
  17. 17.
    F. Petruccione, B. Vacchini, Phys. Rev. E 71, 046134 (2005) ADSCrossRefGoogle Scholar
  18. 18.
    A. Barchielli, B. Vacchini, New J. Phys. 17, 083004 (2015) ADSCrossRefGoogle Scholar
  19. 19.
    S. Gnutzmann, F. Haake, Z. Phys. B 101, 263 (1996) ADSCrossRefGoogle Scholar
  20. 20.
    S. Roy, A. Venugopalan, arXiv:quant-ph/9910004
  21. 21.
    C.H. Fleming, A. Roura, B.L. Hu, Ann. Phys. 326, 1207 (2011) ADSCrossRefGoogle Scholar
  22. 22.
    H.P. Robertson, Phys. Rev. 46, 794 (1934) ADSCrossRefGoogle Scholar
  23. 23.
    H. Dekker, M.C. Valsakumar, Phys. Lett. A 104, 67 (1984) ADSCrossRefGoogle Scholar
  24. 24.
    R.S. Ingarden, A. Kossakowski, Ann. Phys. 89, 451 (1975) ADSCrossRefGoogle Scholar
  25. 25.
    K. Kraus, States, Effects, and Operations: Fundamental Notions of Quantum Theory (Springer, Berlin, 1983) Google Scholar
  26. 26.
    D.A. Trifonov, Eur. Phys. J. B 29, 349 (2002) ADSCrossRefGoogle Scholar
  27. 27.
    R. Courant, D. Hilbert, Methods of Mathematical Physics (Interscience Publishers, New York, 1962) Google Scholar
  28. 28.
    J.Z. Bernád, G. Homa, M.A. Csirik, Eur. Phys. J. D 72, 212 (2018) ADSCrossRefGoogle Scholar
  29. 29.
    K. Robert, G. Hermann, Phys. Rev. E 55, 153 (1997) CrossRefGoogle Scholar
  30. 30.
    H. Fritz, R. Reinhard, Phys. Rev. A 32, 2462 (1985) CrossRefGoogle Scholar
  31. 31.
    B.L. Hu, J.P. Paz, Y. Zhang, Phys. Rev. D 45, 2843 (1992) ADSMathSciNetCrossRefGoogle Scholar
  32. 32.
    K. Yosida, Functional Analysis (Springer-Verlag, Berlin, 1995) Google Scholar
  33. 33.
    V. Giovannetti, D. Vitali, Phys. Rev. A 63, 023812 (2001) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Physics of Complex SystemsEötvös Loránd University, ELTEBudapestHungary
  2. 2.Department of PhysicsUniversity of MaltaMsida MSDMalta
  3. 3.Institut für Angewandte Physik, Technische Universität DarmstadtDarmstadtGermany
  4. 4.Axioplex Ltd.BudapestHungary

Personalised recommendations