Measuring the gravitational acceleration with matter-wave velocimetry

  • Giulio D’Amico
  • Luigi Cacciapuoti
  • Manan Jain
  • Su Zhan
  • Gabriele RosiEmail author
Regular Article
Part of the following topical collections:
  1. Topical Issue: Quantum Technologies for Gravitational Physics


One of the major limitations of atomic gravimeters is represented by the vibration noise of the measurement platform, which cannot be distinguished from the relevant acceleration signal. In this paper we perform atom interferometry measurements of the gravitational acceleration with high resolution without any need for a vibration isolation system or post-corrections based on seismometer data monitoring the residual accelerations at the sensor head. Using two different schemes, a Ramsey and a Ramsey–Bordé interferometer, we measure the velocity variation of freely falling cold atom samples, thus determining the gravitational acceleration experienced by them. Our instrument has a fractional stability of 2.7 × 10−6 at 1 s of integration time, more than one order of magnitude better than a standard Mach–Zehnder interferometer when operated without any vibration isolation or applied post-correction.

Graphical abstract


  1. 1.
    G.M. Tino, M.A. Kasevich (Eds.), Atom Interferometry (SIF and IOS Press, Bologna, Amsterdam, 2014)Google Scholar
  2. 2.
    M. Kasevich, S. Chu, Appl. Phys. B 54, 321 (1992)ADSCrossRefGoogle Scholar
  3. 3.
    A. Peters, K. Yeow, S. Chu, Nature 400, 849 (1999)ADSCrossRefGoogle Scholar
  4. 4.
    H. Müller, S.-W. Chiow, S. Herrmann, S. Chu, K.Y. Chung, Phys. Rev. Lett. 100, 031101 (2008)ADSCrossRefGoogle Scholar
  5. 5.
    J.L. Gouët, T. Mehlstäubler, J. Kim, S. Merlet, A. Clairon, A. Landragin, F.P. DosSantos, Appl. Phys. B 92, 133 (2008)ADSCrossRefGoogle Scholar
  6. 6.
    R. Karcher, A. Imanaliev, S. Merlet, F.P. DosSantos, New J. Phys. 20, 113041 (2018)ADSCrossRefGoogle Scholar
  7. 7.
    T.L. Gustavson, P. Bouyer, M.A. Kasevich, Phys. Rev. Lett. 78, 2046 (1997)ADSCrossRefGoogle Scholar
  8. 8.
    T.L. Gustavson, A. Landragin, M.A. Kasevich, Class. Quant. Grav. 17, 2385 (2000)ADSCrossRefGoogle Scholar
  9. 9.
    B. Canuel, F. Leduc, D. Holleville, A. Gauguet, J. Fils, A. Virdis, A. Clairon, N. Dimarcq, C.J. Bordé, A. Landragin et al., Phys. Rev. Lett. 97, 010402 (2006)ADSCrossRefGoogle Scholar
  10. 10.
    A. Gauguet, B. Canuel, T. Lévèque, W. Chaibi, A. Landragin, Phys. Rev. A 80, 063604 (2009)ADSCrossRefGoogle Scholar
  11. 11.
    I. Dutta, D. Savoie, B. Fang, B. Venon, C.L. Garrido Alzar, R. Geiger, A. Landragin, Phys. Rev. Lett. 116, 183003 (2016)ADSCrossRefGoogle Scholar
  12. 12.
    M.J. Snadden, J.M. McGuirk, P. Bouyer, K.G. Haritos, M.A. Kasevich, Phys. Rev. Lett. 81, 971 (1998)ADSCrossRefGoogle Scholar
  13. 13.
    J.M. McGuirk, G.T. Foster, J.B. Fixler, M.J. Snadden, M.A. Kasevich, Phys. Rev. A 65, 033608 (2002)ADSCrossRefGoogle Scholar
  14. 14.
    F. Sorrentino, Q. Bodart, L. Cacciapuoti, Y.H. Lien, M. Prevedelli, G. Rosi, L. Salvi, G.M. Tino, Phys. Rev. A 89, 023607 (2014)ADSCrossRefGoogle Scholar
  15. 15.
    X.C. Duan, M.K. Zhou, D.K. Mao, H.B. Yao, X.B. Deng, J. Luo, Z.K. Hu, Phys. Rev. A 90, 023617 (2014)ADSCrossRefGoogle Scholar
  16. 16.
    F.P.D. Santos, Phys. Rev. A 91, 063615 (2015)ADSCrossRefGoogle Scholar
  17. 17.
    Y.P. Wang, J.Q. Zhong, X. Chen, R.B. Li, D.W. Li, L. Zhu, H.W. Song, J. Wang, M.S. Zhan, Opt. Commun. 375, 34 (2016)ADSCrossRefGoogle Scholar
  18. 18.
    G. D’Amico, G. Rosi, S. Zhan, L. Cacciapuoti, M. Fattori, G.M. Tino, Phys. Rev. Lett. 119, 253201 (2017)ADSCrossRefGoogle Scholar
  19. 19.
    G. Rosi, L. Cacciapuoti, F. Sorrentino, M. Menchetti, M. Prevedelli, G.M. Tino, Phys. Rev. Lett. 114, 013001 (2015)ADSCrossRefGoogle Scholar
  20. 20.
    P. Asenbaum, C. Overstreet, T. Kovachy, D.D. Brown, J.M. Hogan, M.A. Kasevich, Phys. Rev. Lett. 118, 183602 (2017)ADSCrossRefGoogle Scholar
  21. 21.
    M.G. Tarallo, T. Mazzoni, N. Poli, D.V. Sutyrin, X. Zhang, G.M. Tino, Phys. Rev. Lett. 113, 023005 (2014)ADSCrossRefGoogle Scholar
  22. 22.
    D. Schlippert, J. Hartwig, H. Albers, L.L. Richardson, C. Schubert, A. Roura, W.P. Schleich, W. Ertmer, E.M. Rasel, Phys. Rev. Lett. 112, 203002 (2014)ADSCrossRefGoogle Scholar
  23. 23.
    L. Zhou, S. Long, B. Tang, X. Chen, F. Gao, W. Peng, W. Duan, J. Zhong, Z. Xiong, J. Wang, Y. Zhang, M. Zhan, Phys. Rev. Lett. 115, 013004 (2015)ADSCrossRefGoogle Scholar
  24. 24.
    X.C. Duan, X.B. Deng, M.K. Zhou, K. Zhang, W.J. Xu, F. Xiong, Y.Y. Xu, C.G. Shao, J. Luo, Z.K. Hu, Phys. Rev. Lett. 117, 023001 (2016)ADSCrossRefGoogle Scholar
  25. 25.
    G. Rosi, G. D’Amico, L. Cacciapuoti, F. Sorrentino, M. Prevedelli, M. Zych, C. Brukner, G.M. Tino, Nat. Commun. 8, 15529 (2017)ADSCrossRefGoogle Scholar
  26. 26.
    M. de Angelis, A. Bertoldi, L. Cacciapuoti, A. Giorgini, G. Lamporesi, M. Prevedelli, G. Saccorotti, F. Sorrentino, G.M. Tino, Meas. Sci. Technol. 20, 022001 (2009)CrossRefGoogle Scholar
  27. 27.
    S. Merlet, J.L. Gouët, Q. Bodart, A. Clairon, A. Landragin, F.P.D. Santos, P. Rouchon, Metrologia 46, 87 (2009)ADSCrossRefGoogle Scholar
  28. 28.
    R. Geiger, V. Ménoret, G. Stern, N. Zahzam, P. Cheinet, B. Battelier, A. Villing, F. Moron, M. Lours, Y. Bidel, A. Bresson, A. Landragin, P. Bouyer, Nat. Commun. 2, 474 (2011)ADSCrossRefGoogle Scholar
  29. 29.
    P. Cheiney, L. Fouché, S. Templier, F. Napolitano, B. Battelier, P. Bouyer, B. Barrett, Phys. Rev. Appl. 10, 034030 (2018)ADSCrossRefGoogle Scholar
  30. 30.
    F. Sorrentino, A. Bertoldi, Q. Bodart, L. Cacciapuoti, M. de Angelis, Y.H. Lien, M. Prevedelli, G. Rosi, G.M. Tino, Appl. Phys. Lett. 101, 114106 (2012)ADSCrossRefGoogle Scholar
  31. 31.
    C.J. Bordé, Phys. Lett. A 140, 10 (1989)ADSCrossRefGoogle Scholar
  32. 32.
    R.H. Parker, C. Yu, W. Zhong, B. Estey, H. Müller, Science 360, 191 (2018)ADSMathSciNetCrossRefGoogle Scholar
  33. 33.
    M. Cadoret, E. de Mirandes, P. Cladé, S. Guellati-Khelifa, C. Schwob, F. Nez, L. Julien, F. Biraben, Phys. Rev. Lett. 101, 230801 (2008)ADSCrossRefGoogle Scholar
  34. 34.
    M. Andia, R. Jannin, F. Nez, F. Biraben, S. Guellati-Khélifa, P. Cladé, Phys. Rev. A 88, 031605(R) (2013)ADSCrossRefGoogle Scholar
  35. 35.
    P. Cheinet, B. Canuel, F.P.D. Santos, A. Gauguet, F. Yver-Leduc, A. Landragin, IEEE Trans. Instrum. Meas. 57, 1141 (2008)CrossRefGoogle Scholar
  36. 36.
    G. D’Amico, F. Borselli, L. Cacciapuoti, M. Prevedelli, G. Rosi, F. Sorrentino, G.M. Tino, Phys. Rev. A 93, 063628 (2016)ADSCrossRefGoogle Scholar
  37. 37.
    A. Peters, Metrologia 38, 25 (2001)ADSCrossRefGoogle Scholar
  38. 38.
    A. Louchet-Chauvet, T. Farah, Q. Bodart, A. Clairon, A. Landragin, S. Merlet, F.P.D. Santos, New J. Phys. 13, 065025 (2011)ADSCrossRefGoogle Scholar
  39. 39.
    M. Cadoret, E. de Mirandes, P. Cladé, S. Guellati-Khélifa, C. Schwob, F. Nez, L. Julien, F. Biraben, Phys. Rev. A 85, 013639 (2012)ADSCrossRefGoogle Scholar
  40. 40.
    T. Kovachy, P. Asenbaum, C. Overstreet, C.A. Donnelly, S.M. Dickerson, A. Sugarbaker, J.M. Hogan, M.A. Kasevich, Nature 528, 530 (2015)ADSCrossRefGoogle Scholar
  41. 41.
    G. Ferrari, N. Poli, F. Sorrentino, G.M. Tino, Phys. Rev. Lett. 97, 060402 (2006)ADSCrossRefGoogle Scholar
  42. 42.
    L. Hu, N. Poli, L. Salvi, G.M. Tino, Phys. Rev. Lett. 119, 263601 (2017)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Giulio D’Amico
    • 1
  • Luigi Cacciapuoti
    • 2
  • Manan Jain
    • 1
  • Su Zhan
    • 1
  • Gabriele Rosi
    • 1
    Email author
  1. 1.INFN Sezione di Firenze, Dipartimento di Fisica e Astronomia & LENS, Università di FirenzeSesto Fiorentino (FI)Italy
  2. 2.European Space AgencyNoordwijkThe Netherlands

Personalised recommendations