Advertisement

Isolated attosecond pulses of μJ energy via coherent Thomson-backscattering, driven by a chirped laser pulse

  • Szabolcs HackEmail author
  • Zoltán Tóth
  • Sándor Varró
  • Attila Czirják
Open Access
Regular Article
  • 70 Downloads
Part of the following topical collections:
  1. Topical Issue: Many Particle Spectroscopy of Atoms, Molecules, Clusters and Surfaces (2018)

Abstract

New theoretical and numerical results are presented regarding isolated attosecond XUV – soft X-ray pulses, that can be generated by Thomson-backscattering of a high-intensity single-cycle near-infrared laser pulse on a suitable nanobunch of MeV electons. A simple approximate formula is derived for the cut-off frequency of the collective radiation spectrum, which is then employed to find the length of the nanobunch which emits an isolated pulse of 16 as length. Detailed analysis of the spectral, temporal and spatial features of this attosecond pulse is given. It is also shown that the 100 nJ pulse energy, corresponding to 2.1 × 1018W/cm2 peak intensity of the laser pulse, can be increased to reach the μJ pulse energy both by increasing the intensity or by setting a suitable down-chirp of the laser pulse.

Keywords

Topical issue 

Notes

Acknowledgments

Open access funding provided by ELI-HU Non-profit Ltd.

References

  1. 1.
    F. Krausz, M. Ivanov, Rev. Mod. Phys. 81, 163 (2009)ADSCrossRefGoogle Scholar
  2. 2.
    G. Farkas, C. Tóth, Phys. Lett. A 168, 447 (1992)ADSCrossRefGoogle Scholar
  3. 3.
    G. Sansone, E. Benedetti, F. Calegari, C. Vozzi, L. Avaldi, R. Flammini, L. Poletto, P. Villoresi, C. Altucci, R. Velotta, S. Stagira, S.D. Silvestri, M. Nisoli, Science 314, 443 (2006)ADSCrossRefGoogle Scholar
  4. 4.
    K. Lee, Y.H. Cha, M.S. Shin, B.H. Kim, D. Kim, Phys. Rev. E 67, 026502 (2003)ADSCrossRefGoogle Scholar
  5. 5.
    W. Yan, C. Fruhling, G. Golovin, D. Haden, J. Luo, P. Zhang, B. Zhao, J. Zhang, C. Liu, M. Chen, S. Chen, S. Banerjee, D. Umstadter, Nat. Photon. 11, 514 (2017)CrossRefGoogle Scholar
  6. 6.
    D. Kim, H. Lee, S. Chung, K. Lee, New J. Phys. 11, 063050 (2009)ADSCrossRefGoogle Scholar
  7. 7.
    S.Y. Chung, M. Yoon, D.E. Kim, Opt. Express 17, 7853 (2009)ADSCrossRefGoogle Scholar
  8. 8.
    M. Chen, E. Esarey, C.G.R. Geddes, C.B. Schroeder, G.R. Plateau, S.S. Bulanov, S. Rykovanov, W.P. Leemans, Phys. Rev. ST Accel. Beams 16, 030701 (2013)ADSCrossRefGoogle Scholar
  9. 9.
    W. Luo, T.P. Yu, M. Chen, Y.M. Song, Z.C. Zhu, Y.Y. Ma, H.B. Zhuo, Opt. Express 22, 32098 (2014)ADSCrossRefGoogle Scholar
  10. 10.
    J.X. Li, K.Z. Hatsagortsyan, B.J. Galow, C.H. Keitel, Phys. Rev. Lett. 115, 204801 (2015)ADSCrossRefGoogle Scholar
  11. 11.
    S. Hack, S. Varró, A. Czirják, Nucl. Instr. Meth. Phys. Res. B. 369, 45 (2016)ADSCrossRefGoogle Scholar
  12. 12.
    S. Hack, S. Varró, A. Czirják, New J. Phys. 20, 073043 (2018)ADSCrossRefGoogle Scholar
  13. 13.
    C.G.R. Geddes, C. Tóth, J. van Tilborg, E. Esarey, C.B. Schroeder, D. Bruhwiler, C. Nieter, J. Cary, W.P. Leemans, Nature 431, 538 (2004)ADSCrossRefGoogle Scholar
  14. 14.
    C.M.S. Sears, E. Colby, R. Ischebeck, C. McGuinness, J. Nelson, R. Noble, R.H. Siemann, J. Spencer, D. Walz, T. Plettner, R.L. Byer, Phys. Rev. ST Accel. Beams 11, 061301 (2008)ADSCrossRefGoogle Scholar
  15. 15.
    N. Naumova, I. Sokolov, J. Nees, A. Maksimchuk, V. Yanovsky, G. Mourou, Phys. Rev. Lett. 93, 195003 (2004)ADSCrossRefGoogle Scholar
  16. 16.
    J. Zhu, R.W. Assmann, M. Dohlus, U. Dorda, B. Marchetti, Phys. Rev. ST Accel. Beams 19, 054401 (2016)ADSCrossRefGoogle Scholar
  17. 17.
    J. Maxson, D. Cesar, G. Calmasini, A. Ody, P. Musumeci, D. Alesini, Phys. Rev. Lett. 118, 154802 (2017)ADSCrossRefGoogle Scholar
  18. 18.
    A. Sell, F.X. Kärtner, J. Phys. B: At. Mol. Opt. Phys. 47, 015601 (2014)ADSCrossRefGoogle Scholar
  19. 19.
    K. Schmid, A. Buck, C.M.S. Sears, J.M. Mikhailova, R. Tautz, D. Herrmann, M. Geissler, F. Krausz, L. Veisz, Phys. Rev. ST Accel. Beams 13, 091301 (2010)ADSCrossRefGoogle Scholar
  20. 20.
    A. Buck, M. Nicolai, K. Schmid, C.M.S. Sears, A. Svert, J.M. Mikhailova, F. Krausz, M.C. Kaluza, L. Veisz, Nat. Phys. 7, 543548 (2011)CrossRefGoogle Scholar
  21. 21.
    A. Buck, J. Wenz, J. Xu, K. Khrennikov, K. Schmid, M. Heigoldt, J.M. Mikhailova, M. Geissler, B. Shen, F. Krausz, S. Karsch, L. Veisz, Phys. Rev. Lett. 110, 185006 (2013)ADSCrossRefGoogle Scholar
  22. 22.
    M. Heigoldt, A. Popp, K. Khrennikov, J. Wenz, S.W. Chou, S. Karsch, S.I. Bajlekov, S.M. Hooker, B. Schmidt, Phys. Rev. ST Accel. Beams 18, 121302 (2015)ADSCrossRefGoogle Scholar
  23. 23.
    D. an der Brügge, A. Pukhov, Phys. Plasmas 17, 033110 (2010)ADSCrossRefGoogle Scholar
  24. 24.
    A.A. Gonoskov, A.V. Korzhimanov, A.V. Kim, M. Marklund, A.M. Sergeev, Phys. Rev. E 84, 046403 (2011)ADSCrossRefGoogle Scholar
  25. 25.
    M. Cherednychek, A. Pukhov, Phys. Plasmas 23, 103301 (2016)ADSCrossRefGoogle Scholar
  26. 26.
    C.A. Brau, Phys. Rev. ST Accel. Beams 7, 020701 (2004)ADSCrossRefGoogle Scholar
  27. 27.
    P.A. Golovinski, E.A. Mikhin, J. Exp. Theor. Phys. 113, 545 (2011)ADSCrossRefGoogle Scholar
  28. 28.
    O.E. Vais, S.G. Bochkarev, V.Y. Bychenkov, Plasma Phys. Rep. 42, 818 (2016)ADSCrossRefGoogle Scholar
  29. 29.
    N.D. Sengupta, Bull. Math. Soc. 41, 187 (1949)Google Scholar
  30. 30.
    E.M. McMillan, Phys. Lett. 79, 498 (1950)Google Scholar
  31. 31.
    I.I. Goldman, Phys. Lett. 8, 103 (1964)ADSCrossRefGoogle Scholar
  32. 32.
    J.D. Jackson, Classical Electrodynamics. 4th edn. (Wiley, New York, 1999)Google Scholar
  33. 33.
    S. Varró, F. Ehlotzky, Z. Phys. D: At., Mol. Clusters 22, 619 (1992)CrossRefGoogle Scholar
  34. 34.
    S. Corde, K. Ta Phuoc, G. Lambert, R. Fitour, V. Malka, A. Rousse, A. Beck, E. Lefebvre, Rev. Mod. Phys. 85, 1 (2013)ADSCrossRefGoogle Scholar
  35. 35.
    E. Esarey, S.K. Ride, P. Sprangle, Phys. Rev. E 48, 3003 (1993)ADSCrossRefGoogle Scholar
  36. 36.
    F.V. Hartemann, A.L. Troha, N.C. Luhmann, Z. Toffano, Phys. Rev. E 54, 2956 (1996)ADSCrossRefGoogle Scholar
  37. 37.
    A.G.R. Thomas, Phys. Rev. ST Accel. Beams 13, 020702 (2010)ADSCrossRefGoogle Scholar
  38. 38.
    S.G. Rykovanov, C.G.R. Geddes, J.L. Vay, C.B. Schroeder, E. Esarey, W.P. Leemans, J. Phys. B: At. Mol. Opt. Phys. 47, 234013 (2014)ADSCrossRefGoogle Scholar
  39. 39.
    V.V. Kulagin, V.A. Cherepenin, M.S. Hur, H. Suk, Phys. Rev. Lett. 99, 124801 (2007)ADSCrossRefGoogle Scholar
  40. 40.
    F.Y. Li, Z.M. Sheng, Y. Liu, J. Meyer-ter Vehn, W.B. Mori, W. Lu, J. Zhang, Phys. Rev. Lett. 110, 135002 (2013)ADSCrossRefGoogle Scholar
  41. 41.
    L.J. Wong, B. Freelon, T. Rohwer, N. Gedik, S.G. Johnson, New J. Phys. 17, 013051 (2015)CrossRefGoogle Scholar
  42. 42.
    L. Landau, E. Lifshitz, in The Classical Theory of Fields, Course of Theoretical Physics. 4th edn. (Pergamon, 1975), Vol. 2 Google Scholar

Copyright information

© The Author(s) 2019 2019

Open Access Open Access This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Authors and Affiliations

  • Szabolcs Hack
    • 1
    • 2
    Email author
  • Zoltán Tóth
    • 2
  • Sándor Varró
    • 1
    • 3
  • Attila Czirják
    • 1
    • 2
  1. 1.ELI-ALPS, ELI-HU Non-Profit Ltd.SzegedHungary
  2. 2.Department of Theoretical PhysicsUniversity of SzegedSzegedHungary
  3. 3.Wigner Research Center for Physics, SZFIBudapestHungary

Personalised recommendations