Advertisement

Photoionisation of rubidium in strong laser fields

  • Mihály András PocsaiEmail author
  • Imre Ferenc Barna
  • Károly Tökési
Open Access
Regular Article
  • 30 Downloads
Part of the following topical collections:
  1. Topical Issue: Many Particle Spectroscopy of Atoms, Molecules, Clusters and Surfaces (2018)

Abstract

The photoionisation of rubidium in strong infra-red laser fields based on ab initio calculations was investigated. The bound and the continuum states are described with Slater orbitals and Coulomb wave packets, respectively. The bound state spectra were calculated with the variational method and we found it reproduced the experimental data within a few percent accuracy. Using the similar approach, ionisation of Rb was also successfully investigated. The effects of the shape and the parameters of the pulse to the photoionisation probabilities and the energy spectrum of the ionised electron are shown. These calculations may provide a valuable contribution at the design of laser and plasma based novel accelerators, the CERN AWAKE experiment.

Keywords

Topical issue 

Notes

Acknowledgments

Open access funding provided by MTA Wigner Research Centre for Physics (MTA Wigner FK, MTA EK)

References

  1. 1.
    M. Kitzler, S. Gräfe, Eds.,Ultrafast dynamics driven by intense light pulses: from atoms to solids, from lasers to intense X-rays, in Springer Series on Atomic, Optical, and Plasma Physics (Springer International Publishing, 2016), 86Google Scholar
  2. 2.
    D.G. Arbó, J.E. Miraglia, M.S. Gravielle, K. Schiessl, E. Persson, J. Burgdörfer, Phys. Rev. A 77, 013401 (2008)ADSCrossRefGoogle Scholar
  3. 3.
    J. Hofbrucker, A.V. Volotka, S. Fritzsche, Phys. Rev. A 96, 013409 (2017)ADSCrossRefGoogle Scholar
  4. 4.
    T. Sato, K.L. Ishikawa, I. Brezinová, F. Lackner, S. Nagele, J. Burgdörfer, Phys. Rev. A 94, 023405 (2016)ADSCrossRefGoogle Scholar
  5. 5.
    B.I. Schneider, J. Feist, S. Nagele, R. Pazourek, S. Hu, L.A. Collins, J. Burgdörfer, in Quantum Dynamic Imaging: Theoretical and Numerical Methods (Springer, New York, NY, 2011), pp. 149–208Google Scholar
  6. 6.
    T. Sato, K.L. Ishikawa, Phys. Rev. A 88, 023402 (2013)ADSCrossRefGoogle Scholar
  7. 7.
    I. Bray, D. Fursa, A. Kadyrov, A. Stelbovics, A. Kheifets, A. Mukhamedzhanov, Phys. Rep. 520, 135 (2012)ADSCrossRefGoogle Scholar
  8. 8.
    M.S. Pindzola, F. Robicheaux, S.D. Loch, J.C. Berengut, T. Topcu, J. Colgan, M. Foster, D.C. Griffin, C.P. Ballance, D.R. Schultz, J. Phys. B: At. Mol. Opt. Phys. 40, R39 (2007)ADSCrossRefGoogle Scholar
  9. 9.
    O. Zatsarinny, K. Bartschat, J. Phys. B: At. Mol. Opt. Phys. 46, 112001 (2013)ADSCrossRefGoogle Scholar
  10. 10.
    O. Hassouneh, S. Law, S.F.C. Shearer, A.C. Brown, H.W. van der Hart, Phys. Rev. A 91, 031404 (2015)ADSCrossRefGoogle Scholar
  11. 11.
    H. Bachau, E. Cormier, P. Decleva, J.E. Hansen, F. Martn, Rep. Prog. Phys. 64, 1815 (2001)ADSCrossRefGoogle Scholar
  12. 12.
    J.M. Randazzo, L.U. Ancarani, G. Gasaneo, A.L. Frapiccini, F.D. Colavecchia, Phys. Rev. A 81, 042520 (2010)ADSCrossRefGoogle Scholar
  13. 13.
    E.O. Lawrence, N.E. Edlefsen, Phys. Rev. 34, 233 (1929)ADSCrossRefGoogle Scholar
  14. 14.
    C.B. Collins, S.M. Curry, B.W. Johnson, M.Y. Mirza, M.A. Chellehmalzadeh, J.A. Anderson, D. Popscu, I. Popescu, Phys. Rev. A 14, 1662 (1976)ADSCrossRefGoogle Scholar
  15. 15.
    K. Tamura, M. Oba, T. Arisawa, Appl. Opt. 32, 987 (1993)ADSCrossRefGoogle Scholar
  16. 16.
    Z.M. Wang, D.S. Elliott, Phys. Rev. Lett. 84, 3795 (2000)ADSCrossRefGoogle Scholar
  17. 17.
    E. Courtade, M. Anderlini, D. Ciampini, J.H. Müller, O. Morsch, E. Arimondo, M. Aymar, E.J. Robinson, J. Phys. B: At. Mol. Opt. Phys. 37, 967 (2004)ADSCrossRefGoogle Scholar
  18. 18.
    I.F. Barna, N. Grün, W. Scheid, Eur. Phys. J. D 25, 239 (2003)ADSCrossRefGoogle Scholar
  19. 19.
    I.F. Barna, J. Wang, J. Burgdörfer, Phys. Rev. A 73, 023402 (2006)ADSCrossRefGoogle Scholar
  20. 20.
    A. Green, in Advances in Quantum Chemistry (Academic Press, 1973), Vol. 7, pp. 221-262, http://www.sciencedirect.com/science/article/pii/S0065327608605638
  21. 21.
    A.E.S. Green, R.H. Garvey, C.H. Jackman, Int. J. Quantum Chem. 9, 43 (1975)CrossRefGoogle Scholar
  22. 22.
    R.H. Garvey, C.H. Jackman, A.E.S. Green, Phys. Rev. A 12, 1144 (1975))ADSCrossRefGoogle Scholar
  23. 23.
    M.Z. Milošević, N.S. Simonović, Phys. Rev. A 91, 023424 (2015)ADSCrossRefGoogle Scholar
  24. 24.
    H.A. Bethe, E.E. Saltpeter, Quantum Mechanics of One-and Two-Electron Atoms (Springer Verlag, Berlin, Göttingen, Heidelberg. Academic Press Inc., New York, 1957)Google Scholar
  25. 25.
    C.O. Reinhold, C.A. Falcón, Phys. Rev. A 33, 3859 (1986)ADSCrossRefGoogle Scholar
  26. 26.
    R. Storn, K. Price, J. Global Optim. 11, 341 (1997) MathSciNetCrossRefGoogle Scholar
  27. 27.
    C. Sanderson, R. Curtin, J. Open Source Softw. 1, 26 (2016)ADSCrossRefGoogle Scholar
  28. 28.
    A. Kramide, Y. Ralchenko, NIST ASD Team, Nist Atomic Spectra Database (ver. 5.3) (2015), http://physics.nist.gov/asd
  29. 29.
    E. Gschwendtner, T. Bohl, C. Bracco, A. Butterworth, S. Cipiccia, S. Doebert, V. Fedosseev, E. Feldbaumer, C. Hessler, W. Hofle, M. Martyanov, M. Meddahi, J. Osborne, A. Pardons, A. Petrenko, H. Vincke, The AWAKE experimental facility at CERN, in Proceedings, 5th International Particle Accelerator Conference (IPAC 2014): Dresden, Germany, 15–20 June 2014 (2014), p. MOPRI005, http://jacow.org/IPAC2014/papers/mopri005.pdf
  30. 30.
    F. Morales, M. Richter, S. Patchkovskii, O. Smirnova, Proc. Natl. Acad. Sci. 108, 16906 (2011)ADSCrossRefGoogle Scholar
  31. 31.
    C.O. Reinhold, J. Burgdörfer, J. Phys. B: At. Mol. Opt. Phys. 26, 3101 (1993)ADSCrossRefGoogle Scholar
  32. 32.
    D. Arbó, K. Tökési, J. Miraglia, Nucl. Instrum. Methods Phys. Res. Sect. B 267, 382 (2009)ADSCrossRefGoogle Scholar
  33. 33.
    J.H. Eberly, J. Javanainen, K. Rzążewski, Phys. Rep. 204, 331 (1991)ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2019 2019

Open Access Open Access This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Authors and Affiliations

  1. 1.Wigner Research Centre for Physics of the Hungarian Academy of SciencesBudapestHungary
  2. 2.University of Pécs, Institute of PhysicsPécsHungary
  3. 3.ELI-HU Nonprofit Ltd.SzegedHungary
  4. 4.Institute for Nuclear Research, Hungarian Academy of SciencesDebrecenHungary

Personalised recommendations