Photoionisation of rubidium in strong laser fields

Abstract

The photoionisation of rubidium in strong infra-red laser fields based on ab initio calculations was investigated. The bound and the continuum states are described with Slater orbitals and Coulomb wave packets, respectively. The bound state spectra were calculated with the variational method and we found it reproduced the experimental data within a few percent accuracy. Using the similar approach, ionisation of Rb was also successfully investigated. The effects of the shape and the parameters of the pulse to the photoionisation probabilities and the energy spectrum of the ionised electron are shown. These calculations may provide a valuable contribution at the design of laser and plasma based novel accelerators, the CERN AWAKE experiment.

Graphical abstract

References

  1. 1.

    M. Kitzler, S. Gräfe, Eds.,Ultrafast dynamics driven by intense light pulses: from atoms to solids, from lasers to intense X-rays, in Springer Series on Atomic, Optical, and Plasma Physics (Springer International Publishing, 2016), 86

  2. 2.

    D.G. Arbó, J.E. Miraglia, M.S. Gravielle, K. Schiessl, E. Persson, J. Burgdörfer, Phys. Rev. A 77, 013401 (2008)

    ADS  Article  Google Scholar 

  3. 3.

    J. Hofbrucker, A.V. Volotka, S. Fritzsche, Phys. Rev. A 96, 013409 (2017)

    ADS  Article  Google Scholar 

  4. 4.

    T. Sato, K.L. Ishikawa, I. Brezinová, F. Lackner, S. Nagele, J. Burgdörfer, Phys. Rev. A 94, 023405 (2016)

    ADS  Article  Google Scholar 

  5. 5.

    B.I. Schneider, J. Feist, S. Nagele, R. Pazourek, S. Hu, L.A. Collins, J. Burgdörfer, in Quantum Dynamic Imaging: Theoretical and Numerical Methods (Springer, New York, NY, 2011), pp. 149–208

  6. 6.

    T. Sato, K.L. Ishikawa, Phys. Rev. A 88, 023402 (2013)

    ADS  Article  Google Scholar 

  7. 7.

    I. Bray, D. Fursa, A. Kadyrov, A. Stelbovics, A. Kheifets, A. Mukhamedzhanov, Phys. Rep. 520, 135 (2012)

    ADS  Article  Google Scholar 

  8. 8.

    M.S. Pindzola, F. Robicheaux, S.D. Loch, J.C. Berengut, T. Topcu, J. Colgan, M. Foster, D.C. Griffin, C.P. Ballance, D.R. Schultz, J. Phys. B: At. Mol. Opt. Phys. 40, R39 (2007)

    ADS  Article  Google Scholar 

  9. 9.

    O. Zatsarinny, K. Bartschat, J. Phys. B: At. Mol. Opt. Phys. 46, 112001 (2013)

    ADS  Article  Google Scholar 

  10. 10.

    O. Hassouneh, S. Law, S.F.C. Shearer, A.C. Brown, H.W. van der Hart, Phys. Rev. A 91, 031404 (2015)

    ADS  Article  Google Scholar 

  11. 11.

    H. Bachau, E. Cormier, P. Decleva, J.E. Hansen, F. Martn, Rep. Prog. Phys. 64, 1815 (2001)

    ADS  Article  Google Scholar 

  12. 12.

    J.M. Randazzo, L.U. Ancarani, G. Gasaneo, A.L. Frapiccini, F.D. Colavecchia, Phys. Rev. A 81, 042520 (2010)

    ADS  Article  Google Scholar 

  13. 13.

    E.O. Lawrence, N.E. Edlefsen, Phys. Rev. 34, 233 (1929)

    ADS  Article  Google Scholar 

  14. 14.

    C.B. Collins, S.M. Curry, B.W. Johnson, M.Y. Mirza, M.A. Chellehmalzadeh, J.A. Anderson, D. Popscu, I. Popescu, Phys. Rev. A 14, 1662 (1976)

    ADS  Article  Google Scholar 

  15. 15.

    K. Tamura, M. Oba, T. Arisawa, Appl. Opt. 32, 987 (1993)

    ADS  Article  Google Scholar 

  16. 16.

    Z.M. Wang, D.S. Elliott, Phys. Rev. Lett. 84, 3795 (2000)

    ADS  Article  Google Scholar 

  17. 17.

    E. Courtade, M. Anderlini, D. Ciampini, J.H. Müller, O. Morsch, E. Arimondo, M. Aymar, E.J. Robinson, J. Phys. B: At. Mol. Opt. Phys. 37, 967 (2004)

    ADS  Article  Google Scholar 

  18. 18.

    I.F. Barna, N. Grün, W. Scheid, Eur. Phys. J. D 25, 239 (2003)

    ADS  Article  Google Scholar 

  19. 19.

    I.F. Barna, J. Wang, J. Burgdörfer, Phys. Rev. A 73, 023402 (2006)

    ADS  Article  Google Scholar 

  20. 20.

    A. Green, in Advances in Quantum Chemistry (Academic Press, 1973), Vol. 7, pp. 221-262, http://www.sciencedirect.com/science/article/pii/S0065327608605638

  21. 21.

    A.E.S. Green, R.H. Garvey, C.H. Jackman, Int. J. Quantum Chem. 9, 43 (1975)

    Article  Google Scholar 

  22. 22.

    R.H. Garvey, C.H. Jackman, A.E.S. Green, Phys. Rev. A 12, 1144 (1975))

    ADS  Article  Google Scholar 

  23. 23.

    M.Z. Milošević, N.S. Simonović, Phys. Rev. A 91, 023424 (2015)

    ADS  Article  Google Scholar 

  24. 24.

    H.A. Bethe, E.E. Saltpeter, Quantum Mechanics of One-and Two-Electron Atoms (Springer Verlag, Berlin, Göttingen, Heidelberg. Academic Press Inc., New York, 1957)

  25. 25.

    C.O. Reinhold, C.A. Falcón, Phys. Rev. A 33, 3859 (1986)

    ADS  Article  Google Scholar 

  26. 26.

    R. Storn, K. Price, J. Global Optim. 11, 341 (1997)

    MathSciNet  Article  Google Scholar 

  27. 27.

    C. Sanderson, R. Curtin, J. Open Source Softw. 1, 26 (2016)

    ADS  Article  Google Scholar 

  28. 28.

    A. Kramide, Y. Ralchenko, NIST ASD Team, Nist Atomic Spectra Database (ver. 5.3) (2015), http://physics.nist.gov/asd

  29. 29.

    E. Gschwendtner, T. Bohl, C. Bracco, A. Butterworth, S. Cipiccia, S. Doebert, V. Fedosseev, E. Feldbaumer, C. Hessler, W. Hofle, M. Martyanov, M. Meddahi, J. Osborne, A. Pardons, A. Petrenko, H. Vincke, The AWAKE experimental facility at CERN, in Proceedings, 5th International Particle Accelerator Conference (IPAC 2014): Dresden, Germany, 15–20 June 2014 (2014), p. MOPRI005, http://jacow.org/IPAC2014/papers/mopri005.pdf

  30. 30.

    F. Morales, M. Richter, S. Patchkovskii, O. Smirnova, Proc. Natl. Acad. Sci. 108, 16906 (2011)

    ADS  Article  Google Scholar 

  31. 31.

    C.O. Reinhold, J. Burgdörfer, J. Phys. B: At. Mol. Opt. Phys. 26, 3101 (1993)

    ADS  Article  Google Scholar 

  32. 32.

    D. Arbó, K. Tökési, J. Miraglia, Nucl. Instrum. Methods Phys. Res. Sect. B 267, 382 (2009)

    ADS  Article  Google Scholar 

  33. 33.

    J.H. Eberly, J. Javanainen, K. Rzążewski, Phys. Rep. 204, 331 (1991)

    ADS  Article  Google Scholar 

Download references

Acknowledgments

Open access funding provided by MTA Wigner Research Centre for Physics (MTA Wigner FK, MTA EK)

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mihály András Pocsai.

Additional information

Contribution to the Topical Issue “Many Particle Spectroscopy of Atoms, Molecules, Clusters and Surfaces (2018)’’, edited by Károly Tőkési, Béla Paripás, Gábor Pszota, and Andrey V. Solov’yov.

Rights and permissions

Open Access Open Access This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pocsai, M.A., Barna, I.F. & Tökési, K. Photoionisation of rubidium in strong laser fields. Eur. Phys. J. D 73, 74 (2019). https://doi.org/10.1140/epjd/e2019-90524-3

Download citation

Keywords

  • Topical issue