Laser parameters effects of pump-probe pulse on improvements of spectral continuum and attosecond pulse signal from H2+

  • Hang Liu
  • Rich-Liqiang Feng
  • Henry J. KapteynEmail author
Regular Article


Generally, by properly choosing the delay time of the pump-probe field, the harmonic yield from H2+ can be enhanced due to the charge-resonance-enhanced-ionization. In this paper, through controlling the laser parameters of pump-probe pulse, the improvements of spectral continuum and attosecond pulse signal from H2+ have been further investigated. For the case of controlling pump pulse, it is found that the harmonic yield of H2+ can be enhanced as the pump pulse duration increases. However, as the pump wavelength increases, although the harmonic cutoff can be extended, the harmonic yield is decreased. Furthermore, when the carrier envelope phase of pump pulse is chosen to be 1.0π, the intensity of spectral continuum can be further enhanced slightly. For the case of controlling probe pulse, it is shown that the harmonic cutoff can be extended when the probe pulse duration increases. Moreover, by properly adding a down-chirp in the probe pulse, the harmonic cutoff can be further extended, showing a broader spectral continuum with a stable intensity. Furthermore, with the introduction of inhomogeneous effect of the laser field, a larger harmonic cutoff can be found and a spectral continuum with a bandwidth of 116 eV can be obtained. Moreover, the signal of this spectral continuum is only contributed by a single harmonic emission peak. Finally, through the Fourier transformation of some selected harmonics on this spectral continuum, a single attosecond pulse with the duration of 48 as can be obtained.

Graphical abstract


Optical Phenomena and Photonics 


  1. 1.
    M. Hentschel, R. Kienberger, C. Spielmann, G.A. Reider, N. Milosevic, T. Brabec, P. Corkum, U. Heinzmann, M. Drescher, F. Krausz, Nature 414, 509 (2001)ADSCrossRefGoogle Scholar
  2. 2.
    F. Krausz, M. Ivanov, Rev. Mod. Phys. 81, 163 (2009)ADSCrossRefGoogle Scholar
  3. 3.
    K.J. Yuan, A.D. Bandrauk, Phys. Rev. Lett. 110, 023003 (2013)ADSCrossRefGoogle Scholar
  4. 4.
    J.P. Yao, S.C. Jiang, W. Chu, B. Zeng, C.Y. Wu, R.F. Lu, Z.T. Li, H.Q. Xie, G.H. Li, C. Yu, Z.S. Wang, H.B. Jiang, Q.H. Gong, Y. Cheng, Phys. Rev. Lett. 116, 143007 (2016)ADSCrossRefGoogle Scholar
  5. 5.
    E. Neyra, F. Videla, J.A. Perez-Hernandez, M.F. Ciappina, L. Roso, G.A. Torchia, Eur. Phys. J. D 70, 243 (2016)ADSCrossRefGoogle Scholar
  6. 6.
    D.A. Telnov, S.I. Chu, Phys. Rev. A 80, 043412 (2009)ADSCrossRefGoogle Scholar
  7. 7.
    P.B. Corkum, Phys. Rev. Lett. 71, 1994 (1993)ADSCrossRefGoogle Scholar
  8. 8.
    J.L. Krause, K.J. Schafer, K.C. Kulander, Phys. Rev. Lett. 68, 3535 (1992)ADSCrossRefGoogle Scholar
  9. 9.
    M. Lewenstein, Ph Balcou, MYu Ivanov, A. L’Huillier, P.B. Corkum, Phys. Rev. A 49, 2117 (1994)ADSCrossRefGoogle Scholar
  10. 10.
    V.V. Strelkov, A.F. Sterjantov, N.Y. Shubin, V.T. Platonenko, J. Phys. B: At., Mol. Opt. Phys. 39, 577 (2006)ADSCrossRefGoogle Scholar
  11. 11.
    J. Tate, T. Auguste, H.G. Muller, P. Salières, P. Agostini, L.F. Dimauro, Phys. Rev. Lett. 98, 013901 (2007)ADSCrossRefGoogle Scholar
  12. 12.
    L.Q. Feng, Y.B. Duan, T.S. Chu, Ann. Phys. (Berlin) 525, 915 (2013)ADSCrossRefGoogle Scholar
  13. 13.
    G. Chen, F.D. Zhang, Eur. Phys. J. D 71, 137 (2017)ADSCrossRefGoogle Scholar
  14. 14.
    X. Cao, S.C. Jiang, C. Yu, Y.H. Wang, L.H. Bai, R.F. Lu, Opt. Express 22, 26153 (2014)ADSCrossRefGoogle Scholar
  15. 15.
    L.Q. Li, Y.Y. Xu, X.Y. Miao, J. At. Mol. Sci. 7, 1 (2016)ADSGoogle Scholar
  16. 16.
    H. Mashiko, S. Gibertson, C.Q. Li, S.D. Khan, M.M. Shakya, E. Moon, Z.H. Chang, Phys. Rev. Lett. 100, 103906 (2008)ADSCrossRefGoogle Scholar
  17. 17.
    L.Q. Feng, T.S. Chu, Phys. Rev. A 84, 053853 (2011)ADSCrossRefGoogle Scholar
  18. 18.
    Y. Li, L.Q. Feng, Y. Qiao, Z. Naturforsch. A 74, 561 (2019)ADSCrossRefGoogle Scholar
  19. 19.
    S. Kim, J. Jin, Y.J. Kim, I.Y. Park, Y. Kim, S.W. Kim, Nature 453, 757 (2008)ADSCrossRefGoogle Scholar
  20. 20.
    I.Y. Park, S. Kim, J. Choi, D.H. Lee, Y.J. Kin, M.F. Kling, M.I. Stockman, S.W. Kim, Nat. Photonics 5, 677 (2011)ADSCrossRefGoogle Scholar
  21. 21.
    M.F. Ciappina, J.A. Pérez-Hernández, A.S. Landsman, W. Okell, S. Zherebtsov, B. Förg, J. Schötz, J.L. Seiffert, T. Fennel, T. Shaaran, T. Zimmermann, A. Chacón, R. Guichard, A. Zar, J.W.G. Tisch, J.P. Marangos, T. Witting, A. Braun, S.A. Maier, L. Roso, M. Krüger, P. Hommelhoff, M.F. Kling, F. Krausz, M. Lewenstein, Rep. Prog. Phys. 80, 054401 (2017)ADSCrossRefGoogle Scholar
  22. 22.
    X.Y. Luo, T. Wang, Q. Wang, X.S. Liu, Laser Phys. 26, 115301 (2016)ADSCrossRefGoogle Scholar
  23. 23.
    I. Yavuz, M.F. Ciappina, A. Chacón, Z. Altun, M.F. Kling, M. Lewenstein, Phys. Rev. A 93, 033404 (2016)ADSCrossRefGoogle Scholar
  24. 24.
    J.H. Luo, Y. Li, Z. Wang, Q.B. Zhang, P.X. Lu, J. Phys. B: At., Mol. Opt. Phys. 46, 145602 (2013)ADSCrossRefGoogle Scholar
  25. 25.
    S. Ghimire, A.D. DiChiara, E. Sistrunk, P. Agostini, L.F. DiMauro, D.A. Reis, Nat. Phys. 7, 138 (2011)CrossRefGoogle Scholar
  26. 26.
    K.F. Lee, X. Ding, T.J. Hammond, M.E. Fermann, G. Vampa, P.B. Corkum, Opt. Lett. 42, 1113 (2017)ADSCrossRefGoogle Scholar
  27. 27.
    G. Ndabashimiye, S. Ghimire, M. Wu, D.A. Browne, K.J. Schafer, M.B. Gaarde, D.A. Reis, Nature 534, 520 (2016)ADSCrossRefGoogle Scholar
  28. 28.
    T.Y. Du, Z. Guan, X.X. Zhou, X.B. Bian, Phys. Rev. A 94, 023419 (2016)ADSCrossRefGoogle Scholar
  29. 29.
    S.C. Jiang, J.G. Chen, H. Wei, C. Yu, R.F. Lu, C.D. Lin, Phys. Rev. Lett. 120, 253201 (2018)ADSCrossRefGoogle Scholar
  30. 30.
    D. Golde, T. Meier, S.W. Koch, Phys. Rev. B 77, 075330 (2018)ADSCrossRefGoogle Scholar
  31. 31.
    F.H.M. Faisal, J.Z. Kamiński, Phys. Rev. A 56, 748 (1997)ADSCrossRefGoogle Scholar
  32. 32.
    A.K. Gupta, O.E. Alon, N. Moiseyev, Phys. Rev. B 68, 205101 (2003)ADSCrossRefGoogle Scholar
  33. 33.
    S. Ghimire, A.D. DiChiara, E. Sistrunk, U.B. Szafruga, P. Agostini, L.F. DiMauro, D.A. Reis, Phys. Rev. Lett. 107, 167407 (2011)ADSCrossRefGoogle Scholar
  34. 34.
    S. Ghimire, A.D. DiChiara, E. Sistrunk, P. Agostini, L.F. DiMauro, D.A. Reis, Nat. Phys. 7, 138 (2011)CrossRefGoogle Scholar
  35. 35.
    D.A. Telnov, J. Heslar, S.I. Chu, Phys. Rev. A 90, 063412 (2014)ADSCrossRefGoogle Scholar
  36. 36.
    D.A. Telnov, J. Heslar, S.I. Chu, Phys. Rev. A 95, 043425 (2017)ADSCrossRefGoogle Scholar
  37. 37.
    C. Chirilă, M. Lein, J. Mod. Opt. 53, 113 (2006)ADSCrossRefGoogle Scholar
  38. 38.
    M. Lein, Phys. Rev. Lett. 94, 053004 (2005)ADSCrossRefGoogle Scholar
  39. 39.
    M. Lein, N. Hay, R. Velotta, J.P. Marangos, P.L. Knight, Phys. Rev. Lett. 88, 183903 (2002)ADSCrossRefGoogle Scholar
  40. 40.
    L.Q. Feng, T.S. Chu, J. Chem. Phys. 136, 054102 (2012)ADSCrossRefGoogle Scholar
  41. 41.
    F. Morales, P. Rivière, M. Richter, A. Gubaydullin, M. Ivanov, O. Smirnova, F. Martn, J. Phys. B: At., Mol. Opt. Phys. 47, 204015 (2014)ADSCrossRefGoogle Scholar
  42. 42.
    R.E.F. Silva, P. Rivière, F. Morales, O. Smirnova, M. Ivanov, F. Martn, Sci. Rep. 6, 32653 (2016)ADSCrossRefGoogle Scholar
  43. 43.
    M. Lara-Astiaso, R.E.F. Silva, A. Gubaydullin, P. Rivière, C. Meier, F. Martn, Phys. Rev. Lett. 117, 093003 (2016)ADSCrossRefGoogle Scholar
  44. 44.
    T. Zuo, S. Chelkowski, A.D. Bandrauk, Phys. Rev. A 48, 3837 (1993)ADSCrossRefGoogle Scholar
  45. 45.
    B.N. Wang, L.X. He, F. Wang, H. Yuan, X.S. Zhu, P.F. Lan, P.X. Lu, Opt. Express 25, 17777 (2017)ADSCrossRefGoogle Scholar
  46. 46.
    R.E.F. Silva, I.V. Blinov, A.N. Rubtsov, O. Smirnova, M. Ivanov, Nat. Photonics 12, 266 (2018)ADSCrossRefGoogle Scholar
  47. 47.
    Y.C. Han, L.B. Madsen, J. Phys. B: At., Mol. Opt. Phys. 43, 225601 (2010)ADSCrossRefGoogle Scholar
  48. 48.
    R.F. Lu, P.Y. Zhang, K.L. Han, Phys. Rev. E 77, 066701 (2008)ADSCrossRefGoogle Scholar
  49. 49.
    J. Hu, K.L. Han, G.Z. He, Phys. Rev. Lett. 95, 123001 (2005)ADSCrossRefGoogle Scholar
  50. 50.
    L.Q. Feng, H. Liu, Eur. Phys. J. D 72, 59 (2018)ADSCrossRefGoogle Scholar
  51. 51.
    L.Q. Feng, W.L. Li, H. Liu, Ann. Phys. (Berlin) 529, 1700093 (2017)ADSCrossRefGoogle Scholar
  52. 52.
    H. Liu, W.L. Li, L.Q. Feng, Chem. Phys. Lett. 676, 118 (2017)ADSCrossRefGoogle Scholar
  53. 53.
    P. Antoine, B. Piraux, A. Maquet, Phys. Rev. A 51, R1750 (1995)ADSCrossRefGoogle Scholar
  54. 54.
    A.T. Le, T. Morishita, R.R. Lucchese, C.D. Lin, Phys. Rev. Lett. 109, 203004 (2012)ADSCrossRefGoogle Scholar
  55. 55.
    C.B. Madsen, L.B. Madsen, Phys. Rev. A 74, 023403 (2006)ADSCrossRefGoogle Scholar
  56. 56.
    C. Jin, G.L. Wang, H. Wei, A.T. Le, C.D. Lin, Nat. Commun. 5, 4003 (2014)ADSCrossRefGoogle Scholar
  57. 57.
    C. Jin, C.D. Lin, Chin. Phys. B 25, 094213 (2016)ADSCrossRefGoogle Scholar
  58. 58.
    C. Jin, K.H. Hong, C.D. Lin, Sci. Rep. 6, 38165 (2016)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Hang Liu
    • 1
    • 2
  • Rich-Liqiang Feng
    • 1
    • 2
  • Henry J. Kapteyn
    • 1
    • 3
    Email author
  1. 1.Laboratory of Molecular Reaction Dynamics, Liaoning University of TechnologyJinzhouP.R. China
  2. 2.State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics Chinese Academy of SciencesDalianP.R. China
  3. 3.Department of Chemical and Environmental Engineering ,Marmara UniversityIstanbulTurkey

Personalised recommendations