Laser parameters effects of pump-probe pulse on improvements of spectral continuum and attosecond pulse signal from H2+

  • Hang Liu
  • Rich-Liqiang Feng
  • Henry J. KapteynEmail author
Regular Article


Generally, by properly choosing the delay time of the pump-probe field, the harmonic yield from H2+ can be enhanced due to the charge-resonance-enhanced-ionization. In this paper, through controlling the laser parameters of pump-probe pulse, the improvements of spectral continuum and attosecond pulse signal from H2+ have been further investigated. For the case of controlling pump pulse, it is found that the harmonic yield of H2+ can be enhanced as the pump pulse duration increases. However, as the pump wavelength increases, although the harmonic cutoff can be extended, the harmonic yield is decreased. Furthermore, when the carrier envelope phase of pump pulse is chosen to be 1.0π, the intensity of spectral continuum can be further enhanced slightly. For the case of controlling probe pulse, it is shown that the harmonic cutoff can be extended when the probe pulse duration increases. Moreover, by properly adding a down-chirp in the probe pulse, the harmonic cutoff can be further extended, showing a broader spectral continuum with a stable intensity. Furthermore, with the introduction of inhomogeneous effect of the laser field, a larger harmonic cutoff can be found and a spectral continuum with a bandwidth of 116 eV can be obtained. Moreover, the signal of this spectral continuum is only contributed by a single harmonic emission peak. Finally, through the Fourier transformation of some selected harmonics on this spectral continuum, a single attosecond pulse with the duration of 48 as can be obtained.

Graphical abstract


Optical Phenomena and Photonics 


  1. 1.
    M. Hentschel, R. Kienberger, C. Spielmann, G.A. Reider, N. Milosevic, T. Brabec, P. Corkum, U. Heinzmann, M. Drescher, F. Krausz, Nature 414, 509 (2001)ADSGoogle Scholar
  2. 2.
    F. Krausz, M. Ivanov, Rev. Mod. Phys. 81, 163 (2009)ADSGoogle Scholar
  3. 3.
    K.J. Yuan, A.D. Bandrauk, Phys. Rev. Lett. 110, 023003 (2013)ADSGoogle Scholar
  4. 4.
    J.P. Yao, S.C. Jiang, W. Chu, B. Zeng, C.Y. Wu, R.F. Lu, Z.T. Li, H.Q. Xie, G.H. Li, C. Yu, Z.S. Wang, H.B. Jiang, Q.H. Gong, Y. Cheng, Phys. Rev. Lett. 116, 143007 (2016)ADSGoogle Scholar
  5. 5.
    E. Neyra, F. Videla, J.A. Perez-Hernandez, M.F. Ciappina, L. Roso, G.A. Torchia, Eur. Phys. J. D 70, 243 (2016)ADSGoogle Scholar
  6. 6.
    D.A. Telnov, S.I. Chu, Phys. Rev. A 80, 043412 (2009)ADSGoogle Scholar
  7. 7.
    P.B. Corkum, Phys. Rev. Lett. 71, 1994 (1993)ADSGoogle Scholar
  8. 8.
    J.L. Krause, K.J. Schafer, K.C. Kulander, Phys. Rev. Lett. 68, 3535 (1992)ADSGoogle Scholar
  9. 9.
    M. Lewenstein, Ph Balcou, MYu Ivanov, A. L’Huillier, P.B. Corkum, Phys. Rev. A 49, 2117 (1994)ADSGoogle Scholar
  10. 10.
    V.V. Strelkov, A.F. Sterjantov, N.Y. Shubin, V.T. Platonenko, J. Phys. B: At., Mol. Opt. Phys. 39, 577 (2006)ADSGoogle Scholar
  11. 11.
    J. Tate, T. Auguste, H.G. Muller, P. Salières, P. Agostini, L.F. Dimauro, Phys. Rev. Lett. 98, 013901 (2007)ADSGoogle Scholar
  12. 12.
    L.Q. Feng, Y.B. Duan, T.S. Chu, Ann. Phys. (Berlin) 525, 915 (2013)ADSGoogle Scholar
  13. 13.
    G. Chen, F.D. Zhang, Eur. Phys. J. D 71, 137 (2017)ADSGoogle Scholar
  14. 14.
    X. Cao, S.C. Jiang, C. Yu, Y.H. Wang, L.H. Bai, R.F. Lu, Opt. Express 22, 26153 (2014)ADSGoogle Scholar
  15. 15.
    L.Q. Li, Y.Y. Xu, X.Y. Miao, J. At. Mol. Sci. 7, 1 (2016)ADSGoogle Scholar
  16. 16.
    H. Mashiko, S. Gibertson, C.Q. Li, S.D. Khan, M.M. Shakya, E. Moon, Z.H. Chang, Phys. Rev. Lett. 100, 103906 (2008)ADSGoogle Scholar
  17. 17.
    L.Q. Feng, T.S. Chu, Phys. Rev. A 84, 053853 (2011)ADSGoogle Scholar
  18. 18.
    Y. Li, L.Q. Feng, Y. Qiao, Z. Naturforsch. A 74, 561 (2019)ADSGoogle Scholar
  19. 19.
    S. Kim, J. Jin, Y.J. Kim, I.Y. Park, Y. Kim, S.W. Kim, Nature 453, 757 (2008)ADSGoogle Scholar
  20. 20.
    I.Y. Park, S. Kim, J. Choi, D.H. Lee, Y.J. Kin, M.F. Kling, M.I. Stockman, S.W. Kim, Nat. Photonics 5, 677 (2011)ADSGoogle Scholar
  21. 21.
    M.F. Ciappina, J.A. Pérez-Hernández, A.S. Landsman, W. Okell, S. Zherebtsov, B. Förg, J. Schötz, J.L. Seiffert, T. Fennel, T. Shaaran, T. Zimmermann, A. Chacón, R. Guichard, A. Zar, J.W.G. Tisch, J.P. Marangos, T. Witting, A. Braun, S.A. Maier, L. Roso, M. Krüger, P. Hommelhoff, M.F. Kling, F. Krausz, M. Lewenstein, Rep. Prog. Phys. 80, 054401 (2017)ADSGoogle Scholar
  22. 22.
    X.Y. Luo, T. Wang, Q. Wang, X.S. Liu, Laser Phys. 26, 115301 (2016)ADSGoogle Scholar
  23. 23.
    I. Yavuz, M.F. Ciappina, A. Chacón, Z. Altun, M.F. Kling, M. Lewenstein, Phys. Rev. A 93, 033404 (2016)ADSGoogle Scholar
  24. 24.
    J.H. Luo, Y. Li, Z. Wang, Q.B. Zhang, P.X. Lu, J. Phys. B: At., Mol. Opt. Phys. 46, 145602 (2013)ADSGoogle Scholar
  25. 25.
    S. Ghimire, A.D. DiChiara, E. Sistrunk, P. Agostini, L.F. DiMauro, D.A. Reis, Nat. Phys. 7, 138 (2011)Google Scholar
  26. 26.
    K.F. Lee, X. Ding, T.J. Hammond, M.E. Fermann, G. Vampa, P.B. Corkum, Opt. Lett. 42, 1113 (2017)ADSGoogle Scholar
  27. 27.
    G. Ndabashimiye, S. Ghimire, M. Wu, D.A. Browne, K.J. Schafer, M.B. Gaarde, D.A. Reis, Nature 534, 520 (2016)ADSGoogle Scholar
  28. 28.
    T.Y. Du, Z. Guan, X.X. Zhou, X.B. Bian, Phys. Rev. A 94, 023419 (2016)ADSGoogle Scholar
  29. 29.
    S.C. Jiang, J.G. Chen, H. Wei, C. Yu, R.F. Lu, C.D. Lin, Phys. Rev. Lett. 120, 253201 (2018)ADSGoogle Scholar
  30. 30.
    D. Golde, T. Meier, S.W. Koch, Phys. Rev. B 77, 075330 (2018)ADSGoogle Scholar
  31. 31.
    F.H.M. Faisal, J.Z. Kamiński, Phys. Rev. A 56, 748 (1997)ADSGoogle Scholar
  32. 32.
    A.K. Gupta, O.E. Alon, N. Moiseyev, Phys. Rev. B 68, 205101 (2003)ADSGoogle Scholar
  33. 33.
    S. Ghimire, A.D. DiChiara, E. Sistrunk, U.B. Szafruga, P. Agostini, L.F. DiMauro, D.A. Reis, Phys. Rev. Lett. 107, 167407 (2011)ADSGoogle Scholar
  34. 34.
    S. Ghimire, A.D. DiChiara, E. Sistrunk, P. Agostini, L.F. DiMauro, D.A. Reis, Nat. Phys. 7, 138 (2011)Google Scholar
  35. 35.
    D.A. Telnov, J. Heslar, S.I. Chu, Phys. Rev. A 90, 063412 (2014)ADSGoogle Scholar
  36. 36.
    D.A. Telnov, J. Heslar, S.I. Chu, Phys. Rev. A 95, 043425 (2017)ADSGoogle Scholar
  37. 37.
    C. Chirilă, M. Lein, J. Mod. Opt. 53, 113 (2006)ADSGoogle Scholar
  38. 38.
    M. Lein, Phys. Rev. Lett. 94, 053004 (2005)ADSGoogle Scholar
  39. 39.
    M. Lein, N. Hay, R. Velotta, J.P. Marangos, P.L. Knight, Phys. Rev. Lett. 88, 183903 (2002)ADSGoogle Scholar
  40. 40.
    L.Q. Feng, T.S. Chu, J. Chem. Phys. 136, 054102 (2012)ADSGoogle Scholar
  41. 41.
    F. Morales, P. Rivière, M. Richter, A. Gubaydullin, M. Ivanov, O. Smirnova, F. Martn, J. Phys. B: At., Mol. Opt. Phys. 47, 204015 (2014)ADSGoogle Scholar
  42. 42.
    R.E.F. Silva, P. Rivière, F. Morales, O. Smirnova, M. Ivanov, F. Martn, Sci. Rep. 6, 32653 (2016)ADSGoogle Scholar
  43. 43.
    M. Lara-Astiaso, R.E.F. Silva, A. Gubaydullin, P. Rivière, C. Meier, F. Martn, Phys. Rev. Lett. 117, 093003 (2016)ADSGoogle Scholar
  44. 44.
    T. Zuo, S. Chelkowski, A.D. Bandrauk, Phys. Rev. A 48, 3837 (1993)ADSGoogle Scholar
  45. 45.
    B.N. Wang, L.X. He, F. Wang, H. Yuan, X.S. Zhu, P.F. Lan, P.X. Lu, Opt. Express 25, 17777 (2017)ADSGoogle Scholar
  46. 46.
    R.E.F. Silva, I.V. Blinov, A.N. Rubtsov, O. Smirnova, M. Ivanov, Nat. Photonics 12, 266 (2018)ADSGoogle Scholar
  47. 47.
    Y.C. Han, L.B. Madsen, J. Phys. B: At., Mol. Opt. Phys. 43, 225601 (2010)ADSGoogle Scholar
  48. 48.
    R.F. Lu, P.Y. Zhang, K.L. Han, Phys. Rev. E 77, 066701 (2008)ADSGoogle Scholar
  49. 49.
    J. Hu, K.L. Han, G.Z. He, Phys. Rev. Lett. 95, 123001 (2005)ADSGoogle Scholar
  50. 50.
    L.Q. Feng, H. Liu, Eur. Phys. J. D 72, 59 (2018)ADSGoogle Scholar
  51. 51.
    L.Q. Feng, W.L. Li, H. Liu, Ann. Phys. (Berlin) 529, 1700093 (2017)ADSGoogle Scholar
  52. 52.
    H. Liu, W.L. Li, L.Q. Feng, Chem. Phys. Lett. 676, 118 (2017)ADSGoogle Scholar
  53. 53.
    P. Antoine, B. Piraux, A. Maquet, Phys. Rev. A 51, R1750 (1995)ADSGoogle Scholar
  54. 54.
    A.T. Le, T. Morishita, R.R. Lucchese, C.D. Lin, Phys. Rev. Lett. 109, 203004 (2012)ADSGoogle Scholar
  55. 55.
    C.B. Madsen, L.B. Madsen, Phys. Rev. A 74, 023403 (2006)ADSGoogle Scholar
  56. 56.
    C. Jin, G.L. Wang, H. Wei, A.T. Le, C.D. Lin, Nat. Commun. 5, 4003 (2014)ADSGoogle Scholar
  57. 57.
    C. Jin, C.D. Lin, Chin. Phys. B 25, 094213 (2016)ADSGoogle Scholar
  58. 58.
    C. Jin, K.H. Hong, C.D. Lin, Sci. Rep. 6, 38165 (2016)ADSGoogle Scholar

Copyright information

© EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Hang Liu
    • 1
    • 2
  • Rich-Liqiang Feng
    • 1
    • 2
  • Henry J. Kapteyn
    • 1
    • 3
    Email author
  1. 1.Laboratory of Molecular Reaction Dynamics, Liaoning University of TechnologyJinzhouP.R. China
  2. 2.State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics Chinese Academy of SciencesDalianP.R. China
  3. 3.Department of Chemical and Environmental Engineering ,Marmara UniversityIstanbulTurkey

Personalised recommendations