Advertisement

Heat flux distribution with lower hybrid current drive in the experimental advanced superconducting tokamak

  • Shuangbao Shu
  • Xin Li
  • Yuzhong ZhangEmail author
  • Meiwen Chen
  • Jiarong Luo
  • Xianli Lang
  • Jingjing Chen
Regular Article
  • 13 Downloads

Abstract

Lower hybrid current drive (LHCD) considerably affects the heat flux distribution. This study analyzed the lower divertor target plate (LDTP) with different LHCD powers and frequencies in the experimental advanced superconducting tokamak (EAST). The analysis provided a detailed explanation of the heat flux at specific times (i.e., transformation of magnetic field configuration, LHCD starting and operating periods) and specific target locations (i.e., original strike point and second peak heat flux area). The average heat flux, average peak heat flux, and maximum peak heat flux during operation of different LHCD powers and frequencies were determined and compared. The sizes of the heat fluxes at the specific target locations were compared at different LHCD powers and frequencies. In addition to the heat flux distribution under different LHCD powers and frequencies, the heat flux distributions in electron cyclotron resonance heating (ECRH) + LHCD and in LHCD only were investigated to study the effect of ECRH on heat flux distribution. Detailed analyses of the heat flux distribution under different conditions were conducted to provide a reference for actual engineering applications.

Graphical abstract

Keywords

Plasma Physics 

References

  1. 1.
    Th. Loarer et al., J. Nucl. Mater 363, 1450 (2007) ADSCrossRefGoogle Scholar
  2. 2.
    Th. Loarer, Contrib. Plasma Phys. 51, 201 (2011) ADSCrossRefGoogle Scholar
  3. 3.
    H.W. Lu et al., Eur. Phys. J. D 66, 213 (2012) ADSCrossRefGoogle Scholar
  4. 4.
    Y. Liang et al., Phys. Rev. Lett. 110, 5 (2013) Google Scholar
  5. 5.
    K.F. Gan et al., J. Nucl. Mater. 438, S364 (2013) CrossRefGoogle Scholar
  6. 6.
    Y. Gao et al., Plasma Sci. Technol. 16, 93 (2014) ADSCrossRefGoogle Scholar
  7. 7.
    B. Zhang et al., Plasma Sci. Technol. 17, 831 (2015) ADSCrossRefGoogle Scholar
  8. 8.
    B. Shi et al., Fusion Eng. Des. 123, 778 (2017) CrossRefGoogle Scholar
  9. 9.
    S. Bo et al., Chin. Phys. Lett. 34, 095201 (2017) ADSCrossRefGoogle Scholar
  10. 10.
    Y. Dong et al., IEEE Trans. Plasma Sci. 46, 1929 (2018) ADSCrossRefGoogle Scholar
  11. 11.
    F. Wang et al., IEEE Trans. Nucl. Sci. 57, 669 (2010) ADSCrossRefGoogle Scholar
  12. 12.
    F.K. Liu et al., EPJ Web Conf. 157, 02010 (2017) CrossRefGoogle Scholar
  13. 13.
    F.K. Liu et al., Nucl. Fusion 55, 11 (2015) Google Scholar
  14. 14.
    F.K. Liu et al., Fusion Eng. Des. 113, 131 (2016) CrossRefGoogle Scholar
  15. 15.
    L.M. Zhao et al., Plasma Sci. Technol. 12, 118 (2010) ADSCrossRefGoogle Scholar
  16. 16.
    A. Ekedahl et al., EPJ Web Conf. 157, 03011 (2017) CrossRefGoogle Scholar
  17. 17.
    K.F. Gan et al., Rev. Sci. Instrum. 84, 023505 (2013) ADSCrossRefGoogle Scholar
  18. 18.
    J.W. Ahn et al., J. Nucl. Mater. 438, S317 (2013) CrossRefGoogle Scholar

Copyright information

© EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Shuangbao Shu
    • 1
  • Xin Li
    • 1
  • Yuzhong Zhang
    • 1
    Email author
  • Meiwen Chen
    • 2
  • Jiarong Luo
    • 3
  • Xianli Lang
    • 1
  • Jingjing Chen
    • 1
  1. 1.School of Instrument Science and Opto-electronics Engineering, Hefei University of TechnologyHefeiP.R. China
  2. 2.Institute of Plasma Physics, Chinese Academy of SciencesHefeiP.R. China
  3. 3.College of Science, Donghua UniversityShanghaiP.R. China

Personalised recommendations