A molecular dynamics study on cooling rate effect on atomic structure of solidified silver nanoparticles

  • Truong Quoc Vo
  • BoHung KimEmail author
Regular Article


The atomic structures and solidification point of silver nanoparticles (SNPs) are studied in a series of molecular dynamics simulations based on the empirical embedded atom methods (EAM). The solidification point is calculated from the extracted potential energy during the cooling process, whereas the atomic structures are analyzed using the common neighbor (CN) method. The results indicate that the structures of the solidified SNPs are very sensitive to both the applied cooling rate and the particle size. We find the critical cooling rate where a glassy structure is observed. Below the critical rate, polycrystalline nanoparticles are formed, where the percentage of the close-packed structures, i.e., FCC and HCP, decreases with increasing cooling rate. Moreover, the proportion of those structures is always larger with a bigger particle size for an identical applied cooling rate. The findings in this study provide useful information for many practical applications where the nanostructure strongly affects thermal management and operational efficiency.

Graphical abstract


Molecular Physics and Chemical Physics 


  1. 1.
    H.-S. Yoon, J.-Y. Lee, H.-S. Kim, M.-S. Kim, E.-S. Kim, Y.-J. Shin, W.-S. Chu, S.-H. Ahn, Int. J. of Precis. Eng. and Manuf.-Green Tech. 1, 261 (2014)CrossRefGoogle Scholar
  2. 2.
    H.S. Kang, J.Y. Lee, S. Choi, H. Kim, J.H. Park, J.Y. Son, B.H. Kim, S.D. Noh, Int. J. of Precis. Eng. and Manuf.-Green Tech. 3, 111 (2016)CrossRefGoogle Scholar
  3. 3.
    E. Fantino, A. Chiappone, I. Roppolo, D. Manfredi, R. Bongiovanni, C.F. Pirri, F. Calignano, Adv. Mater. 28, 3712 (2016)CrossRefGoogle Scholar
  4. 4.
    J.J. Adams, E.B. Duoss, T.F. Malkowski, M.J. Motala, B.Y. Ahn, R.G. Nuzzo, J.T. Bernhard, J.A. Lewis, Adv. Mater. 23, 1335 (2011)CrossRefGoogle Scholar
  5. 5.
    M.S. Mannoor, Z. Jiang, T. James, Y.L. Kong, K.A. Malatesta, W.O. Soboyejo, N. Verma, D.H. Gracias, M.C. McAlpine, Nano Lett. 13, 2634 (2013)ADSCrossRefGoogle Scholar
  6. 6.
    J. Schneider, P. Rohner, D. Thureja, M. Schmid, P. Galliker, D. Poulikakos, Adv. Funct. Mater. 26, 833 (2016)CrossRefGoogle Scholar
  7. 7.
    R. Van Noorden, Nature News 502, 280 (2013)ADSCrossRefGoogle Scholar
  8. 8.
    T.Q. Vo, B. Kim, J. Chem. Phys. 148, 034703 (2018)ADSCrossRefGoogle Scholar
  9. 9.
    Z. Liang, W.J. Evans, P. Keblinski, J. Chem. Phys. 141, 014706 (2014)ADSCrossRefGoogle Scholar
  10. 10.
    T.Q. Vo, M. Barisik, B. Kim, J. Chem. Phys. 144, 194707 (2016)ADSCrossRefGoogle Scholar
  11. 11.
    P.K. Schelling, S.R. Phillpot, P. Keblinski, J. Appl. Phys. 95, 6082 (2004)ADSCrossRefGoogle Scholar
  12. 12.
    T. Watanabe, B. Ni, S.R. Phillpot, P.K. Schelling, P. Keblinski, J. Appl. Phys. 102, 063503 (2007)ADSCrossRefGoogle Scholar
  13. 13.
    T.Q. Vo, B. Kim, Sci. Rep. 6, 33881 (2016)ADSCrossRefGoogle Scholar
  14. 14.
    T.Q. Vo, B. Park, C. Park, B. Kim, J. Mech. Sci. Technol. 29, 1681 (2015)CrossRefGoogle Scholar
  15. 15.
    J. Ghorbanian, A. Beskok, Microfluid. Nanofluid. 20, 121 (2016)CrossRefGoogle Scholar
  16. 16.
    T.Q. Vo, B.H. Kim, Int. J. . of Precis. Eng. and Manuf.-Green Tech. 4, 301 (2017)CrossRefGoogle Scholar
  17. 17.
    Y. Shibuta, J. Therm. Sci. Technol. 7, 45 (2012)CrossRefGoogle Scholar
  18. 18.
    Y. Shibuta, T. Suzuki, Chem. Phys. Lett. 502, 82 (2011)ADSCrossRefGoogle Scholar
  19. 19.
    Y. Shibuta, T. Suzuki, Chem. Phys. Lett. 498, 323 (2010)ADSCrossRefGoogle Scholar
  20. 20.
    Y. Shibuta, T. Suzuki, J. Chem. Phys. 129, 144102 (2008)ADSCrossRefGoogle Scholar
  21. 21.
    T. Dung Nguyen, C. Cuong Nguyen, V. Hung Tran, RSC Adv. 7, 25406 (2017)CrossRefGoogle Scholar
  22. 22.
    A. Mahata, M.A. Zaeem, M.I. Baskes, Model. Simul. Mater. Sci. Eng. 26, 025007 (2018)ADSCrossRefGoogle Scholar
  23. 23.
    Y. Qi, T. Çağin, W.L. Johnson, W.A. Goddard, J. Chem. Phys. 115, 385 (2001)ADSCrossRefGoogle Scholar
  24. 24.
    J.-H. Shim, S.-C. Lee, B.-J. Lee, J.-Y. Suh, Y. Whan Cho, J. Cryst. Growth 250, 558 (2003)ADSCrossRefGoogle Scholar
  25. 25.
    F.F. Chen, H.F. Zhang, F.X. Qin, Z.Q. Hu, J. Chem. Phys. 120, 1826 (2004)ADSCrossRefGoogle Scholar
  26. 26.
    Z.-A. Tian, R.-S. Liu, H.-R. Liu, C.-X. Zheng, Z.-Y. Hou, P. Peng, J. Non-Cryst, Solids 354, 3705 (2008)Google Scholar
  27. 27.
    I. Lobato, J. Rojas, C.V. Landauro, J. Torres, J. Phys.: Condens. Matter 21, 055301 (2009)ADSGoogle Scholar
  28. 28.
    W.H. Qi, B.Y. Huang, M.P. Wang, F.X. Liu, Z.M. Yin, Comput. Mater. Sci. 42, 517 (2008)CrossRefGoogle Scholar
  29. 29.
    S. Plimpton, J. Comput. Phys. 117, 1 (1995)ADSCrossRefGoogle Scholar
  30. 30.
    A. Stukowski, Model. Simul. Mater. Sci. Eng. 18, 015012 (2010)ADSCrossRefGoogle Scholar
  31. 31.
    S.M. Foiles, M.I. Baskes, M.S. Daw, Phys. Rev. B 33, 7983 (1986)ADSCrossRefGoogle Scholar
  32. 32.
    J.D. Honeycutt, H.C. Andersen, J. Phys. Chem. 91, 4950 (1987)CrossRefGoogle Scholar
  33. 33.
    D. Faken, H. Jónsson, Comput. Mater. Sci. 2, 279 (1994)CrossRefGoogle Scholar

Copyright information

© EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Technical University of Kaiserslautern, Laboratory of Engineering Thermodynamics (LTD)KaiserslauternGermany
  2. 2.School of Mechanical Engineering, University of UlsanNamgu, UlsanSouth Korea

Personalised recommendations