Advertisement

Manipulation of Goos–Hänchen shifts in a HCN→HNC isomerization with permanent dipole moments

  • Mostafa SahraiEmail author
  • Majid Minaee-Yazdi
  • Sohrab Ahmadi-Kandjani
  • Reza Kheradmand
Regular Article
  • 24 Downloads

Abstract

The behavior of the Goos-Hänchen shifts of the reflected probe light beam at the interface of a three-layer cavity with a three-level Λ-type molecular system is theoretically investigated. The molecular system is HCN→HNC isomerization with nonzero permanent dipole moments (PDMs). The effect of electromagnetically induced transparency (EIT) induced by PDMs in molecules is studied for (1+1)- and (1+2)-transition processes. Thus, the optical response of the medium is modified by the quantum coherence due to nonzero PDMs. Moreover, the reflected probe light field for both transitions experiences superluminal light propagation. Goos–Hänchen shifts of the reflected probe light beam are substantially modified by the refractive index of the interactive medium as well as incident angle. The effect of the coherent coupling field intensity on absorption, dispersion, group index, and the Goos–Hänchen shifts of the reflected probe beam is also discussed.

Graphical abstract

Keywords

Optical Phenomena and Photonics 

References

  1. 1.
    F. Goos, H. Hänchen, Ann. Phys. 436, 333 (1947).Google Scholar
  2. 2.
    F. Goos, H. Lindberg-Hänchen, Ann. Phys. 440, 251 (1949).Google Scholar
  3. 3.
    M. Merano, A. Aiello, G.W. ‘t Hooft, M.P. van Exter, E.R. Eliel, J.P. Woerdman, Opt. Express 15, 15928 (2007).ADSGoogle Scholar
  4. 4.
    A. Radmehr, M. Sahrai, H. Sattari, Appl. Opt. 55, 1946 (2016).ADSGoogle Scholar
  5. 5.
    N.J. Harrick, Phys. Rev. Lett. 4, 224 (1960).ADSGoogle Scholar
  6. 6.
    T. Hashimoto, T. Yoshino, Opt. Lett. 14, 913 (1989).ADSGoogle Scholar
  7. 7.
    H.K.V. Lotsch, Optik (Stuttg.) 32, 116137 (1970).Google Scholar
  8. 8.
    H.K.V. Lotsch, Optik (Stuttg.) 32, 189 (1970).Google Scholar
  9. 9.
    H.K.V. Lotsch, Optik (Stuttg.) 32, 299 (1971).Google Scholar
  10. 10.
    H.K.V. Lotsch, Optik (Stuttg.) 32, 553 (1971).Google Scholar
  11. 11.
    C.F. Li, Phys. Rev. Lett. 91, 133903 (2003).ADSGoogle Scholar
  12. 12.
    X. Chen, C.F. Li, Phys. Rev. E 69, 066617 (2004).ADSGoogle Scholar
  13. 13.
    X. Chen, R.R. Wei, M. Shen, Z.F. Zhang, C.F. Li, Appl. Phys. B: Lasers Opt. 101, 283 (2010).ADSGoogle Scholar
  14. 14.
    D. Felbacq, A. Moreau, R. Smaâli, Opt. Lett. 28, 1633 (2003).ADSGoogle Scholar
  15. 15.
    M. Kumari, S. Dutta Gupta, Opt. Commun. 285, 617 (2012).ADSGoogle Scholar
  16. 16.
    Y. Song, H.C. Wu, Y. Guo, Appl. Phys. Lett. 100, 253116 (2012).ADSGoogle Scholar
  17. 17.
    Y. Wang, Y. Liu, B. Wang, Physica E 53, 186 (2013).ADSGoogle Scholar
  18. 18.
    Z. Cao, Y. Cheng, Physica B 407, 4254 (2012).ADSGoogle Scholar
  19. 19.
    M. Cheng, Eur. Phys. J. B 85, 89 (2012).ADSGoogle Scholar
  20. 20.
    X. Chen, P.-L. Zhao, X.-J. Lu, Eur. Phys. J. B 86, 223 (2013).ADSGoogle Scholar
  21. 21.
    L.G. Wang, M. Ikram, M.S. Zubairy, Phys. Rev. A 77, 023811 (2008).ADSGoogle Scholar
  22. 22.
    S. Ziauddin, M.S. Qamar, Zubairy, Phys. Rev. A 81, 023821 (2010).ADSGoogle Scholar
  23. 23.
    S. Ziauddin, Qamar, Phys. Rev. A 84, 053844 (2011).ADSGoogle Scholar
  24. 24.
    H.R. Hamedi, A. Radmehr, M. Sahrai, Phys. Rev. A 90, 053836 (2014).ADSGoogle Scholar
  25. 25.
    M. Rezaei, M. Sahrai, Eur. Phys. J. D 68, 551 (2014).Google Scholar
  26. 26.
    Y. Wang, H. Li, Z. Cao, T. Yu, Q. Shen, Y. He, Appl. Phys. Lett. 92, 061117 (2008).ADSGoogle Scholar
  27. 27.
    S.A. Taya, E.J. El-Farram, T.M. El-Agez, AEU Int. J. Electron. Commun. 66, 204 (2012).Google Scholar
  28. 28.
    A. Lazoudis, T. Kirova, E.H. Ahmed, P. Qi, J. Huennekens, A.M. Lyyra, Phys. Rev. A 83, 063419 (2011).ADSGoogle Scholar
  29. 29.
    W.J. Meath, E.A. Power, J. Phys. B: At. Mol. Phys. 17, 763 (1984).ADSGoogle Scholar
  30. 30.
    W.J. Meath, E.A. Power, Mol. Phys. 51, 585 (1984).ADSGoogle Scholar
  31. 31.
    M.A. Kmetic, W.J. Meath, Phys. Lett. A 108, 340 (1985).ADSGoogle Scholar
  32. 32.
    S. Nakai, W.J. Meath, J. Chem. Phys. 96, 4991 (1992).ADSGoogle Scholar
  33. 33.
    A. Kondo, W. Meath, S. Nilar, A. Thakkar, Chem. Phys. 186, 375 (1994).Google Scholar
  34. 34.
    A. Brown, W.J. Meath, J. Chem. Phys. 109, 9351 (1998).ADSGoogle Scholar
  35. 35.
    B.N. Jagatap, W.J. Meath, J. Opt. Soc. Am. B 19, 2673 (2002).ADSGoogle Scholar
  36. 36.
    W. Meath, B. Jagatap, A. Kondo, J. Phys. B: At. Mol. Opt. Phys 39, S605 (2006).ADSGoogle Scholar
  37. 37.
    W.J. Meath, B.N. Jagatap, J. Phys. B: At. Mol. Opt. Phys. 44, 205401 (2011).ADSGoogle Scholar
  38. 38.
    N. Singh, Q.V. Lawande, R. D’Souza, B.N. Jagatap, J. Chem. Phys. 137, 104309 (2012).ADSGoogle Scholar
  39. 39.
    G. Vemuri, G.S. Agarwal, B.D. Nageswara Rao, Phys. Rev. A 53, 2842 (1996).ADSGoogle Scholar
  40. 40.
    A. Javan, O. Kocharovskaya, H. Lee, M.O. Scully, Phys. Rev. A 66, 013805 (2002).ADSGoogle Scholar
  41. 41.
    H. Lee, Y. Rostovtsev, C.J. Bednar, A. Javan, Appl. Phys. B: Lasers Opt. 76, 33 (2003).ADSGoogle Scholar
  42. 42.
    M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions, with Formulas, Graphs, and Mathematical Tables. 9th ed. (Dover Publications, 1970).Google Scholar
  43. 43.
    K. Artmann, Ann. Phys. 437, 87 (1948).Google Scholar
  44. 44.
    E. Döpel, J. Mod. Opt. 37, 237 (1990).ADSGoogle Scholar
  45. 45.
    O.F. Siddiqui, M. Mojahedi, G.V. Eleftheriades, IEEE Trans. Antennas Propag. 51, 2619 (2003).ADSGoogle Scholar
  46. 46.
    X. Chen, X.J. Lu, Y. Wang, C.F. Li, Phys. Rev. B 83, 195409 (2011).ADSGoogle Scholar
  47. 47.
    A. Brown, Chem. Phys. 342, 16 (2007).Google Scholar
  48. 48.
    J. Gong, A. Ma, S.A. Rice, J. Chem. Phys. 122, 144311 (2005).ADSGoogle Scholar
  49. 49.
    J. Gong, A. Ma, S.A. Rice, J. Chem. Phys. 122, 204505 (2005).ADSGoogle Scholar
  50. 50.
    G. Herzberg, Vibrations, vibrational energy level, and vibrational eigenfunctions, in Infrared and raman spectra of polyatomic molecules, molecular spectra and molecular Structure (D. Van Nostrand Company, 1945), Vol. II, p. 174.Google Scholar
  51. 51.
    J.M. Bowman, S. Irle, K. Morokuma, A. Wodtke, J. Chem. Phys. 114, 7923 (2001).ADSGoogle Scholar
  52. 52.
    M. Anton, I. Gonzalo, IEEE J. Quantum Electron. 31, 1088 (1995).ADSGoogle Scholar
  53. 53.
    J.P. Lavoine, J. Chem. Phys. 127, 094107 (2007).ADSGoogle Scholar
  54. 54.
    Q. Du, C. Hang, G. Huang, J. Opt. Soc. Am. B 31, 594 (2014).ADSGoogle Scholar
  55. 55.
    A.K. Ghatak, K. Thyagarajan, Evanescent waves and the Goos-Hänchen effect, Contemporary optics (Springer, 1978), pp. 331–352.Google Scholar
  56. 56.
    N.H. Liu, S.Y. Zhu, H. Chen, X. Wu, Phys. Rev. E 65, 046607 (2002).ADSGoogle Scholar
  57. 57.
    L.-G. Wang, H. Chen, N.-H. Liu, S.-Y. Zhu, Opt. Lett. 31, 1124 (2006).ADSGoogle Scholar
  58. 58.
    M. Born, E. Wolf, A.B. Bhatia, P.C. Clemmow, D. Gabor, A.R. Stokes, A.M. Taylor, P.A. Wayman, W.L. Wilcock, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University Press, 1999).Google Scholar

Copyright information

© EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Mostafa Sahrai
    • 1
    • 2
    Email author
  • Majid Minaee-Yazdi
    • 1
    • 2
  • Sohrab Ahmadi-Kandjani
    • 1
    • 2
  • Reza Kheradmand
    • 1
    • 2
  1. 1.Research Institute for Applied Physics and Astronomy, University of TabrizTabrizIran
  2. 2.Aras International Campus, University of TabrizTabrizIran

Personalised recommendations