Advertisement

Entanglement in anisotropic expanding spacetime

  • Roberto Pierini
  • Shahpoor Moradi
  • Stefano ManciniEmail author
Regular Article
Part of the following topical collections:
  1. Topical Issue: Quantum Correlations

Abstract

We study the effect of space anisotropy in the entanglement generated by expanding universe on spin 0 and 1/2 fields. For massive scalar field we find revivals of entanglement entropy vs. momentum after decreasing from the maximum at k = 0. In massive Dirac field the effect is a slight distortion of the non-monotonic profile giving rise to the maximum of entanglement entropy at k > 0. More interestingly, massless field of both type show that can only get entangled through anisotropy, with a maximum of entanglement entropy occurring at k > 0.

Graphical abstract

References

  1. 1.
    J.L. Ball, I.F. Schuller, F.P. Schuller, Phys. Lett. A 359, 550 (2006) ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    S. Moradi, R. Pierini, S. Mancini, Phys. Rev. D 89, 024022 (2014) ADSCrossRefGoogle Scholar
  3. 3.
    E. Martin-Martinez, N.C. Menicucci, Class. Quantum Grav. 29, 224011 (2012) ADSCrossRefGoogle Scholar
  4. 4.
    L. Parker, Phys. Rev. Lett. 21, 562 (1968) ADSCrossRefGoogle Scholar
  5. 5.
    L. Parker, Phys. Rev. 183, 1057 (1969) ADSCrossRefGoogle Scholar
  6. 6.
    L. Parker, Phys. Rev. D 3, 346 (1971) ADSCrossRefGoogle Scholar
  7. 7.
    N.D. Birrell, P.C. Davies, Quantum Fields in Curved Space (Cambridge University Press, Cambridge, 1982) Google Scholar
  8. 8.
    R.G. Cai, Y.Z. Ma, B. Tang, Z.L. Tuo, Phys. Rev. D 87, 123522 (2013) ADSCrossRefGoogle Scholar
  9. 9.
    Z.Q. Sun, F.Y. Wang, Mon. Not. Roy. Astron. Soc. 478, 5153 (2018) ADSCrossRefGoogle Scholar
  10. 10.
    B. Javanmardi, C. Porciani, P. Kroupa, J. Pflamm-Altemburg, Astrophys. J. 810, 47 (2015) ADSCrossRefGoogle Scholar
  11. 11.
    Y.A. Zeldovich, A.A. Starobinski, Zh. Exp. Theor. Fiz. 61, 2161 (1971) [Sov. Phys. JETP 34, 1159 (1972)] ADSGoogle Scholar
  12. 12.
    K.H. Lotze, Class. Quantum Grav. 3, 81 (1986) ADSCrossRefGoogle Scholar
  13. 13.
    K.H. Lotze, Class. Quantum Grav. 2, 351 (1985) ADSCrossRefGoogle Scholar
  14. 14.
    R. Pierini, S. Moradi, S. Mancini, Nucl. Phys. B 924, 684 (2017) ADSCrossRefGoogle Scholar
  15. 15.
    R. Pierini, S. Moradi, S. Mancini, Int. J. Theor. Phys. 55, 3059 (2016) CrossRefGoogle Scholar
  16. 16.
    N.D. Birrell, P.C.W. Davies, J. Phys. A: Math. General 13, 2109 (1980) ADSCrossRefGoogle Scholar
  17. 17.
    N.D. Birrell, Proc. R. Soc. Lond. A 367, 123 (1979) ADSCrossRefGoogle Scholar
  18. 18.
    G. Mangano et al., Nucl. Phys. B 729, 221 (2005) ADSCrossRefGoogle Scholar
  19. 19.
    R. Trotta, A. Melchiorri, Phys. Rev. Lett. 95, 011305 (2005) ADSCrossRefGoogle Scholar
  20. 20.
    B. Follin, L. Knox, M. Millea, Z. Pan, Phys. Rev. Lett. 115, 091301 (2015) ADSCrossRefGoogle Scholar
  21. 21.
    V. Mukhanov, Physical Foundation of Cosmology (Cambridge University Press, Cambridge, 2005) Google Scholar
  22. 22.
    G. Ver Steeg, N.C. Menicucci, Phys. Rev. D 79, 044027 (2009) ADSCrossRefGoogle Scholar
  23. 23.
    D. Rideout et al., Class. Quantum Grav. 29, 224011 (2012) ADSCrossRefGoogle Scholar
  24. 24.
    I. Fuentes, R.B. Mann, E. Martin-Martinez, S. Moradi, Phys. Rev. D 82, 045030 (2010) ADSCrossRefGoogle Scholar
  25. 25.
    S. Mancini, R. Pierini, M.M. Wilde, New J. Phys. 16, 123049 (2014) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Roberto Pierini
    • 1
  • Shahpoor Moradi
    • 2
  • Stefano Mancini
    • 3
    • 4
    Email author
  1. 1.Institute of Theoretical Physics, University of Warsaw02-093 WarsawPoland
  2. 2.University of Calgary, Department of GeoscienceCalgaryCanada
  3. 3.School of Science and Technology, University of CamerinoCamerinoItaly
  4. 4.INFN-Sezione di PerugiaPerugiaItaly

Personalised recommendations