Advertisement

Effects of the nonlinear interactions on the tunneling time of ultracold atoms

  • Fazal BadshahEmail author
  • Abdul Basit
  • Hamad Ali
  • Qing He
  • Haiyang Zhang
  • Guo-qin GeEmail author
Regular Article
  • 11 Downloads

Abstract

We study the tunneling of ultraslow two-level atoms through a high-Q microwave cavity in the presence of Kerr type nonlinearity. It is found that the phase time of traversal is significantly modified by the nonlinear effects of the cavity field. Specifically, when an appropriate nonlinearity is introduced one may obtain alternate sub and superclassical traversal behaviors of the tunneling time with increasing energies of the incident atoms. It is due to an increase in the number of resonances in the transmission amplitude induced by the Kerr field. Further, in the presence of Kerr medium the scattering like nature of the interaction, i.e., the mazer action may be realized for somewhat higher values of energies of the incident cold atoms. In addition, phase time can be switched from sub to superclassical values by adjusting strength of the Kerr nonlinearity.

Graphical abstract

Keywords

Quantum Optics 

References

  1. 1.
    S. Haroche, M. Bune, J.M. Raimond, Europhys. Lett. 14, 19 (1991) ADSCrossRefGoogle Scholar
  2. 2.
    B.G. Englert, J. Schiwnger, A.O. Barut, M.O. Sculy, Europhys. Lett. 14, 25 (1991) ADSCrossRefGoogle Scholar
  3. 3.
    M.O. Scully, G.M. Meyer, H. Walther, Phys. Rev. Lett. 76, 4144 (1996) ADSCrossRefGoogle Scholar
  4. 4.
    G.M. Meyer, M.O. Scully, H. Walther, Phys. Rev. A 56, 4142 (1997) ADSCrossRefGoogle Scholar
  5. 5.
    M. Löffler, G.M. Meyer, M. Schroder, M.O. Scully, H. Walther, Phys. Rev. A 56, 4153 (1997) ADSCrossRefGoogle Scholar
  6. 6.
    M. Schroder, K. Vogel, W.P. Schleich, M.O. Scully, H. Walther, Phys. Rev. A 56, 4164 (1997) ADSCrossRefGoogle Scholar
  7. 7.
    M. Löffler, G.M. Meyer, H. Walther, Europhys. Lett. 41, 593 (1998) ADSCrossRefGoogle Scholar
  8. 8.
    T. Bastin, J. Martin, Phys. Rev. A 67, 053804 (2003) ADSCrossRefGoogle Scholar
  9. 9.
    J. Martin, T. Bastin, Eur. Phys. J. D 29, 133 (2004) ADSCrossRefGoogle Scholar
  10. 10.
    M. Usman, S. Qamar, S. Qamar, Opt. Commun. 284, 2182 (2011) ADSCrossRefGoogle Scholar
  11. 11.
    J.C. Retamal, E. Solano, N. Zagury, Opt. Commun. 154, 28 (1998) ADSCrossRefGoogle Scholar
  12. 12.
    T. Bastin, E. Solano, Comput. Phys. Commun. 124, 197 (2000) ADSCrossRefGoogle Scholar
  13. 13.
    J. Larson, J. Phys. B: At. Mol. Opt. Phys. 42, 044015 (2009) ADSCrossRefGoogle Scholar
  14. 14.
    Laser-Cooling Techniques are Reviewed in Laser Manipulation of Atoms and Ions, edited by E. Arimondo, W.D. Phillips, F. Strumia (North-, Amsterdam, 1992) Google Scholar
  15. 15.
    C. Bracher, J. Phys. B: At. Mol. Opt. Phys. 30, 2717 (1997) ADSCrossRefGoogle Scholar
  16. 16.
    E.H. Hauge, J.A. Stovneng, Rev. Mod. Phys. 61, 917 (1989) ADSCrossRefGoogle Scholar
  17. 17.
    V.S. Olkhovsky, E. Recami, J. Jakiel, Phys. Rep. 398, 133 (2004) ADSCrossRefGoogle Scholar
  18. 18.
    H.G. Winful, Phys. Rep. 436, 1 (2006) ADSCrossRefGoogle Scholar
  19. 19.
    T.E. Hartman, J. Appl. Phys. 33, 3427 (1962) ADSCrossRefGoogle Scholar
  20. 20.
    E.P. Wigner, Phys. Rev. 98, 145 (1955) ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    A.M. Steinberg, R.Y. Chiao, Phys. Rev. A 49, 3283 (1994) ADSCrossRefGoogle Scholar
  22. 22.
    A.M. Steinberg, P.G. Kwiat, R.Y. Chiao, Phys. Rev. Lett. 71, 708 (1993) ADSCrossRefGoogle Scholar
  23. 23.
    T. Hils, J. Felber, R. Gähler, W. Gläser, R. Golub, K. Habicht, P. Wille, Phys. Rev. A 58, 4784 (1998) ADSCrossRefGoogle Scholar
  24. 24.
    R. Arun, G.S. Agarwal, Phys. Rev. A 64, 065802 (2001) ADSCrossRefGoogle Scholar
  25. 25.
    F. Badshah, M. Irfan, S. Qamar, S. Qamar, Phys. Rev. A 84, 032107 (2011) ADSCrossRefGoogle Scholar
  26. 26.
    F. Badshah, M. Irfan, S. Qamar, S. Qamar, Phys. Rev. A 87, 012132 (2013) ADSCrossRefGoogle Scholar
  27. 27.
    F. Badshah, M. Irfan, S. Qamar, S. Qamar, Phys. Rev. A 88, 044101 (2013) ADSCrossRefGoogle Scholar
  28. 28.
    F. Badshah, M. Irfan, S. Qamar, S. Qamar, Opt. Commun. 365, 157 (2016) ADSCrossRefGoogle Scholar
  29. 29.
    F. Badshah, A. Basit, H. Ali, G.Q. Ge, Laser Phys. Lett. 14, 025205 (2017) ADSCrossRefGoogle Scholar
  30. 30.
    F. Badshah, G.Q. Ge, M. Irfan, S. Qamar, S. Qamar, Sci. Rep. 8, 1864 (2018) ADSCrossRefGoogle Scholar
  31. 31.
    F.L. Hu, F. Badshah, A. Basit, H.Y. Zhang, Q. He, G.Q. Ge, Commun. Theor. Phys. 70, 613 (2018) ADSCrossRefGoogle Scholar
  32. 32.
    B. Deb, D.S. Ray, Phys. Rev. A 48, 3191 (1993) ADSCrossRefGoogle Scholar
  33. 33.
    W.S. Dong, Q.Z. Jun, Z.Z. Ming, J.L. Xia, Acta Phys. Sin. 50, 1925 (2001) Google Scholar
  34. 34.
    W.S. Dong, Commun. Theor. Phys. 38, 637 (2002) ADSCrossRefGoogle Scholar
  35. 35.
    D.F. Walls, M.J. Collett, A.S. Lane, Phys. Rev. A 42, 4366 (1990) ADSCrossRefGoogle Scholar
  36. 36.
    S.F. Pereira, M. Xiao, H.J. Kimble, J.L. Hall, Phys. Rev. A 38, 4931 (1988) ADSCrossRefGoogle Scholar
  37. 37.
    A. Imamoǧlu, H. Schmidt, G. Woods, M. Deutsch, Phys. Rev. Lett. 79, 1467 (1997) ADSCrossRefGoogle Scholar
  38. 38.
    Y.F. Gao, J. Feng, G.M. Zhang, Commun. Theor. Phys. 47, 131 (2007) ADSCrossRefGoogle Scholar
  39. 39.
    S. Bandopadhyay, A.M. Jayannavar, Int. J. Mod. Phys. B 21, 1681 (2007) ADSCrossRefGoogle Scholar
  40. 40.
    J.G. Muga, I.L. Egusquiza, J.A. Damborenea, F. Delgado, Phys. Rev. A 66, 042115 (2002) ADSCrossRefGoogle Scholar
  41. 41.
    L.J. Wang, A. Kuzmich, A. Dogariu, Nature (London) 406, 277 (2000) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Physics, Huazhong University of Science and TechnologyWuhanP.R. China
  2. 2.Quantum Optics Lab, Department of Physics, COMSATS UniversityIslamabadPakistan
  3. 3.College of Science, Zhongyuan University of TechnologyZhengzhouP.R. China

Personalised recommendations