Advertisement

Improvement of the safe transmission distance via optimization of the photon number distribution for the faint optical pulse in practical quantum key distribution systems

  • Zhantong Qi
  • Cong Du
  • Xiaojuan Qin
  • Jindong WangEmail author
  • Zhengjun Wei
  • Zhiming Zhang
Regular Article Quantum Information
  • 29 Downloads

Abstract

With practical quantum key distribution (QKD) systems, estimating the safe transmission distance and the safe bit rate under some transmission distance is quite important. For the practical QKD setup, with decoy states, the photon count distribution of the faint laser pulse with signal states can be optimized to acquire the maximum transmission distance. With this goal, we implement a method combining mathematical derivation and numerical simulation to find the optimal photon count distribution under realistic conditions; the numerical simulation results show that the new distributions can be employed in the decoy QKD system to reach safe transmission distances farther than those reached by systems with the Poisson distribution.

Graphical abstract

References

  1. 1.
    R. Renner , N. Gisin , B. Kraus , Phys. Rev. A 72, 012332 (2005)ADSCrossRefGoogle Scholar
  2. 2.
    B. Kraus , N. Gisin , R. Renner , Phys. Rev. Lett. 95, 080501 (2005)ADSCrossRefGoogle Scholar
  3. 3.
    D. Deutsch , A. Ekert , R. Jozsa , C. Macchiavello , S. Popescu , A. Sanpera , Phys. Rev. Lett. 77, 2818 (1996) [Erratum: Phys. Rev. Lett. 80, 2022 (1998)] ADSCrossRefGoogle Scholar
  4. 4.
    P.W. Shor , J. Preskill , Phys. Rev. Lett. 85, 441 (2000)ADSCrossRefGoogle Scholar
  5. 5.
    W.Y. Hwang , Phys. Rev. Lett. 91, 057901 (2003)ADSCrossRefGoogle Scholar
  6. 6.
    X.B. Wang , Phys. Rev. Lett. 94, 230503 (2005)ADSCrossRefGoogle Scholar
  7. 7.
    H.-K. Lo , X. Ma , K. Chen , Phys. Rev. Lett. 94, 230504 (2005)ADSCrossRefGoogle Scholar
  8. 8.
    B. Huttner , N. Imoto , N. Gisin , T. Mor , Phys. Rev. A 51, 1863 (1995)ADSCrossRefGoogle Scholar
  9. 9.
    W. Kai , G.L. Long , Phys. Rev. A 72, 022336 (2005)ADSCrossRefGoogle Scholar
  10. 10.
    G. Brassard , N. Lütkenhaus , T. Mor , B.C. Sanders , Phys. Rev. Lett. 85, 1330 (2000)ADSCrossRefGoogle Scholar
  11. 11.
    N. Lütkenhaus , M. Jahma , New J. Phys. 4, 44 (2002)ADSCrossRefGoogle Scholar
  12. 12.
    D. Gottesman , H.-K. Lo , N. Lütkenhaus , J. Preskill , Quantum Inf. Comput. 4, 325 (2004)MathSciNetGoogle Scholar
  13. 13.
    X.-B. Wang , Phys. Rev. A 72, 012322 (2005) [Erratum: Phys. Rev. A 72, 049908 (2005)] ADSCrossRefGoogle Scholar
  14. 14.
    X. Ma , B. Qi , Y. Zhao , H.-K. Lo , Phys. Rev. A 72, 012326 (2005)ADSCrossRefGoogle Scholar
  15. 15.
    D. Rosenberg , J.W. Harrington , P.R. Rice , P.A. Hiskett , C.G. Peterson , R.J. Hughes , A.E. Lita , S.W. Nam , J.E. Nordholt , Phys. Rev. Lett. 98, 010503 (2007)ADSCrossRefGoogle Scholar
  16. 16.
    Y. Zhao , B. Qi , X. Ma , H.-K. Lo , L. Qian , Phys. Rev. Lett. 96, 070502 (2006)ADSCrossRefGoogle Scholar
  17. 17.
    Q. Wang , X.-B. Wang , G.-C. Guo , Phys. Rev. A 75, 012312 (2007)ADSCrossRefGoogle Scholar
  18. 18.
    Y.G. Tan , Q.Y. Cai , Eur. Phys. J. D 56, 449 (2010)ADSCrossRefGoogle Scholar
  19. 19.
    H.-K. Lo , M. Curty , B. Qi , Phys. Rev. Lett. 108, 130503 (2012)ADSCrossRefGoogle Scholar
  20. 20.
    Q. Wang , X.-B. Wang , Phy. Rev. A 88, 052332 (2013)ADSCrossRefGoogle Scholar
  21. 21.
    Y. Liu , T.-Y. Chen , J. Wang , W.-Q. Cai , X. Wan , L.-K. Chen , J.-H. Wang , S.-B. Liu , H. Liang , L. Yang , C.-Z. Peng , K. Chen , Z.-B. Chen , J.-W. Pan , Opt. Express 18, 8587 (2010)ADSCrossRefGoogle Scholar
  22. 22.
    K. Takemoto , Y. Nambu , T. Miyazawa , Y. Sakuma , T. Yamamoto , S. Yorozu , Y. Arakawa , Sci. Rep. 5, 14383 (2015)ADSCrossRefGoogle Scholar
  23. 23.
    H.-L. Yin , T.-Y. Chen , Z.-W. Yu , H. Liu , L.-X. You , Y.-H. Zhou , S.-J. Chen , Y. Mao , M.-Q. Huang , W.-J. Zhang , H. Chen , M.J. Li , D. Nolan , F. Zhou , X. Jiang , Z. Wang , Q. Zhang , X.-B. Wang , J.-W. Pan , Phys. Rev. Lett. 117, 190501 (2016)ADSCrossRefGoogle Scholar
  24. 24.
    X. Ma , H.-K. Lo , New J. Phys. 10, 073018 (2008)ADSCrossRefGoogle Scholar
  25. 25.
    M. Curty , X. Ma , B. Qi , T. Moroder , Phys. Rev. A 81, 022310 (2010)ADSCrossRefGoogle Scholar
  26. 26.
    Y. Adachi , T. Yamamoto , M. Koashi , N. Imoto , Phys. Rev. Lett. 99, 180503 (2007)ADSCrossRefGoogle Scholar
  27. 27.
    C.H. Zhang , D. Wang , X.-Y. Zhou , S. Wang , L.-B. Zhang , Z.-Q. Yin , W. Chen , Z.-F. Han , G.-C. Guo , Q. Wang , Opt. Express 26, 25921 (2018)ADSCrossRefGoogle Scholar
  28. 28.
    R. Nehra , C.H. Chang , A. Beling , O. Pfister , https://arXiv:1708.09015 (2017)
  29. 29.
    M. Jönsson , G. Björk , Phys. Rev. A 99, 043822 (2018)ADSCrossRefGoogle Scholar
  30. 30.
    X. Ma , C.H.F. Fung , M. Razavi , Phys. Rev. A 86, 052305 (2012)ADSCrossRefGoogle Scholar
  31. 31.
    Z. Zhang , Q. Zhao , M. Razavi , X. Ma , Phys. Rev. A 95, 012333 (2017)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Zhantong Qi
    • 1
  • Cong Du
    • 1
  • Xiaojuan Qin
    • 2
  • Jindong Wang
    • 1
    Email author
  • Zhengjun Wei
    • 1
  • Zhiming Zhang
    • 1
  1. 1.Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, South China Normal UniversityHigh Education City, GuangzhouP.R. China
  2. 2.Guangdong Polytechnic InstituteGuangzhouP.R. China

Personalised recommendations