Advertisement

Non-Markovianity of a Gaussian quantum Brownian motion channel using generalized LFS and Gaussian interferometric power measures

  • Samane Hesabi
  • Davood AfsharEmail author
Regular Article
  • 36 Downloads

Abstract

The non-monotonic behavior of the quantities such as Gaussian interferometric power and mutual information indicates the non-Markovianity of a dynamics through which two non-Markovianity measures have been introduced, Gaussian interferometric power measure for discrete and continuous variable systems and LFS measure for discrete variable systems. In this paper, we generalize the LFS measure to continuous variable systems. Then, we study and compare the degree of non-Markovianity of the continuous variable quantum Brownian motion channel using the above two measures. We consider an Ohmic environment with Lorentz-Drude cut-off and initial states, including the entangled thermal vacuum state and the separable mixed thermal state. It is observed that the degree of non-Markovianity depends on the parameters of the environment, the system and the applied measures. In addition, if thermal vacuum state is assumed as the initial state and the above measures have been used, the degree of non-Markovianity can be considered as that of the channel.

Graphical abstract

Keywords

Quantum Information 

References

  1. 1.
    H.-P. Breuer, F. Petruccione, in The theory of open quantum systems (Oxford University Press, Oxford, 2002), p. 649 Google Scholar
  2. 2.
    P. Haikka, S. McEndoo, S. Maniscalco, Phys. Rev. A 87, 012127 (2013) ADSCrossRefGoogle Scholar
  3. 3.
    A. Rivas, S. Huelga, M. Plenio, Rep. Prog. Phys. 77, 094001 (2014) ADSCrossRefGoogle Scholar
  4. 4.
    E.-M. Laine et al., Phys. Rev. Lett. 108, 210402 (2012) ADSCrossRefGoogle Scholar
  5. 5.
    À. Rivas et al., Phys. Rev. Lett. 105, 050403 (2010) ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    H.-P. Breuer, E.-M. Laine, J. Piilo, Phys. Rev. Lett. 103, 210401 (2009) ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    S. Luo, S. Fu, H. Song, Phys. Rev. A 86, 044101 (2012) ADSCrossRefGoogle Scholar
  8. 8.
    T. Chanda, S. Bhattacharya, Ann. Phys. 366, 1 (2016) ADSCrossRefGoogle Scholar
  9. 9.
    D. Wang et al., Sci. Rep. 7, 1066 (2017) ADSCrossRefGoogle Scholar
  10. 10.
    R. Vasile et al., Phys. Rev. A 84, 052118 (2011) ADSCrossRefGoogle Scholar
  11. 11.
    S. Lorenzo, F. Plastina, M. Paternostro, Phys. Rev. A 88, 020102 (2013) ADSCrossRefGoogle Scholar
  12. 12.
    G. Adesso, Phys. Rev. A 90, 022321 (2014) ADSCrossRefGoogle Scholar
  13. 13.
    L.A.M. Souza et al., Phys. Rev. A 92, 052122 (2015) ADSCrossRefGoogle Scholar
  14. 14.
    I. de Vega, D. Alonso, Rev. Mod. Phys. 89, 015001 (2017) ADSCrossRefGoogle Scholar
  15. 15.
    P. Ullersma, Physica 32, 27 (1966) ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    G. Adesso, A. Serafini, F. Illuminati, Phys. Rev. A 70, 022318 (2004) ADSCrossRefGoogle Scholar
  17. 17.
    G. Adesso, F. Illuminati, Phys. Rev. A 72, 032334 (2005) ADSCrossRefGoogle Scholar
  18. 18.
    J. Laurat et al., Optics 7, S577 (2005) Google Scholar
  19. 19.
    R. Simon, Phys. Rev. Lett 84, 2726 (2000) ADSCrossRefGoogle Scholar
  20. 20.
    G. Adesso, F. Illuminati, arXiv:quant-ph/0510052 (2005)
  21. 21.
    S. Maniscalco et al., Phys. Rev. A 70, 032113 (2004) ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    F. Intravaia, S. Maniscalco, A. Messina, Phys. Rev A 67, 042108 (2003) ADSCrossRefGoogle Scholar
  23. 23.
    F. Intravaia, S. Maniscalco, A. Messina, Eur. Phys. J. B 32, 97 (2003) ADSCrossRefGoogle Scholar
  24. 24.
    R. Vasile et al., Phys. Rev. A 80, 062324 (2009) ADSCrossRefGoogle Scholar
  25. 25.
    U. Weiss, in Quantum dissipative systems (World Scientific, Singapore, 2012), p. 448 Google Scholar
  26. 26.
    A. Isar, Phys. Scr. T160, 014019 (2014) ADSCrossRefGoogle Scholar
  27. 27.
    A. Serafini, F. Illuminati, S.D. Siena, J. Phys. B: At. Mol. Opt. Phys. 37, L21 (2004) ADSCrossRefGoogle Scholar
  28. 28.
    P. Haikka, T.H. Johnson, S. Maniscalco, Phys. Rev. A 87, 010103 (2013) ADSCrossRefGoogle Scholar
  29. 29.
    Z.-D. Hu, Y.-X. Zhang, Y.-Q. Zhang, Commun. Theor. Phys. 62, 634 (2014) ADSCrossRefGoogle Scholar
  30. 30.
    B.-H. Liu et al., Europhys. Lett. 114, 10005 (2016) ADSCrossRefGoogle Scholar
  31. 31.
    R. Vasile, F. Galve, R. Zambrini, Phys. Rev. A 89, 022109 (2014) ADSCrossRefGoogle Scholar
  32. 32.
    H.-B. Chenet et al., Sci. Rep. 5, 12753 (2015) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsFaculty of Science, Shahid Chamran University of AhvazAhvazIran
  2. 2.Center for Research on Laser and Plasma, Shahid Chamran University of AhvazAhvazIran

Personalised recommendations