The extraordinary mode in the three-dimensional magnetized plasma photonic crystals with layer-by-layer lattices containing the function dielectric

  • Hai-Feng ZhangEmail author
  • Hao Zhang
Regular Article


In this paper, the characteristics of the extraordinary mode in the three-dimensional (3D) function magnetized plasma photonic crystals (FMPPCs) containing the function dielectric are theoretically investigated by the plane wave expansion method. In such a case, the magneto-optical Voigt effect is considered. The configuration for such FMPPCs is that the function dielectric columns are surrounded by the magnetized plasma, and the embedded dielectric columns are stacked with layer-by-layer lattices, which are arrayed with face-centered-tetragonal symmetry. The relative permittivity of function columns depends on the space coordinates. The relationships between the parameters of FMPPCs and the photonic band gap (PBG) of the extraordinary mode also are studied. The computed results show that the PBG can be tailored by those parameters. Compared with the conventional function dielectric PCs and plasma-dielectric PCs with the same topology, the narrower PBG for the extraordinary mode can be observed in the proposed FMPPCs, and its location is in the higher frequency region.

Graphical abstract


Optical Phenomena and Photonics 


  1. 1.
    E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987)ADSCrossRefGoogle Scholar
  2. 2.
    S. John, Phys. Rev. Lett. 58, 2486 (1987)ADSCrossRefGoogle Scholar
  3. 3.
    J.J. Joannopoulos, R.D. Meade, J.N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University Press, New Jersey, 1995).Google Scholar
  4. 4.
    H.F. Zhang, S.B. Liu, X.K. Kong, L. Zou, C.Z. Li, W.S. Qing, Phys. Plasmas 19, 022103 (2012)ADSCrossRefGoogle Scholar
  5. 5.
    C. Li, S. Liu, X. Kong, H. Zhang, B. Bian, X. Zhang, I.E.E.E. Trans, Plasma Sci. 39, 1969 (2011)CrossRefGoogle Scholar
  6. 6.
    B. Guo, Phys. Plasmas 16, 042508 (2009)CrossRefGoogle Scholar
  7. 7.
    H. Hojo, A. Mase, J. Plasma Fusion Res. 80, 89 (2004)ADSCrossRefGoogle Scholar
  8. 8.
    V.L. Ginzburg, The Propagation of Electromagnetic Waves in Plasmas (Pergamon, Oxford, New York, 1970).Google Scholar
  9. 9.
    L. Shiveshwari, Optik 122, 1523 (2011)ADSCrossRefGoogle Scholar
  10. 10.
    A.G. Ardakani, J. Opt. Soc. Am. B 31, 332 (2014)ADSCrossRefGoogle Scholar
  11. 11.
    H. Mehdian, Z. Mohammadzahery, A. Hasanbeigi, Phys. Plasmas 21, 012101 (2014)ADSCrossRefGoogle Scholar
  12. 12.
    H.F. Zhang, S.B. Liu, J.P. Zhen, Y.J. Tang, Phys. Plasmas 21, 032127 (2014)ADSCrossRefGoogle Scholar
  13. 13.
    H.F. Zhang, S.B. Liu, J.P. Zhen, X.K. Kong, Phys. Plasmas 20, 092105 (2013)ADSCrossRefGoogle Scholar
  14. 14.
    H.F. Zhang, S.B. Liu, H. Huan, X.K. Kong, Phys. Plasmas 20, 032118 (2013)ADSCrossRefGoogle Scholar
  15. 15.
    H.F. Zhang, S.B. Liu, J.P. Zhen, Y.J. Tang, Phys. Plasmas 21, 032127 (2014)ADSCrossRefGoogle Scholar
  16. 16.
    H.F. Zhang, S.B. Liu, X.K. Kong, B.R. Bian, Y.N. Cuo, Solid State Commun. 152, 1221 (2012)ADSCrossRefGoogle Scholar
  17. 17.
    L. Qi, X. Zhang, Solid State Commun. 151, 1838 (2011).ADSCrossRefGoogle Scholar
  18. 18.
    T.C. King, C.C. Yang, P.H. Hsieh, T.W. Chang, C.J. Wu, Physica E 67, 7 (2015).ADSCrossRefGoogle Scholar
  19. 19.
    T.C. King, C.C. Wang, W.K. Kou, C.J. Wu, IEEE Photonics J. 5, 2700706 (2013)ADSCrossRefGoogle Scholar
  20. 20.
    P. Kopperschmidt, Appl. Phys. B 76, 729 (2003)ADSCrossRefGoogle Scholar
  21. 21.
    S.H. Fan, P.R. Villeneuve, J.D. Joannopoulos, J. Appl. Phys. 78, 1415 (1995)ADSCrossRefGoogle Scholar
  22. 22.
    K.M. Ho, C.T. Chan, C.M. Soukoulis, R. Biswas, M. Sigalas, G. Oszlanyi, O. Trovarelli, Solid State Commun. 89, 413 (1994).ADSCrossRefGoogle Scholar
  23. 23.
    T.F. Khalkhali, B. Rezaei, M. Kalafi, Opt. Commun. 284, 3315 (2011).ADSCrossRefGoogle Scholar
  24. 24.
    D.D. Wang, Y.S. Wang, X.Q. Zhang, Z.Q. He, L.X. Yi, L.E. Deng, X. Han, Appl. Phy. B 81, 465 (2005).ADSCrossRefGoogle Scholar
  25. 25.
    H.F. Zhang, Physica B 525, 104 (2017)ADSCrossRefGoogle Scholar
  26. 26.
    X.J. Liu, Y. Liang, J. Ma, S.Q. Zhang, H. Li, X.Y. Wu, Y.H. Wu, Physica E 85, 227 (2017)ADSCrossRefGoogle Scholar
  27. 27.
    X.Y. Wu, S.Q. Zhang, B.J. Zhang, X.J. Liu, J. Wang, H. Li, N. Ba, X.G. Yin, J.W. Li, Physica E 53, 1 (2013)ADSCrossRefGoogle Scholar
  28. 28.
    I.S. Maksymov, L.F. Marsal, M.A. Ustyantsev, J. Pallarès, Opt. Commun. 248, 469 (2005)ADSCrossRefGoogle Scholar
  29. 29.
    H. Azuma, J. Phys. D: Appl. Phys. 41, 369 (2012)Google Scholar
  30. 30.
    B. Youssefi, M.K. Moravvej-Farshi, N. Granpayeh, Opt. Commun. 285, 3228 (2012)ADSCrossRefGoogle Scholar
  31. 31.
    D.C. Dobson, J. Gopalakrishnan, J.E. Pasciak, J. Comput. Phys. 161, 668 (2000)ADSMathSciNetCrossRefGoogle Scholar
  32. 32.
    H.F. Zhang, G.W. Ding, H.M. Li, S.B. Liu, Phys. Plasmas 22, 022105 (2015)ADSCrossRefGoogle Scholar
  33. 33.
    K.M. Ho, C.T. Chan, C.M. Soukoulis, Phys. Rev. Lett. 65, 3152 (1990)ADSCrossRefGoogle Scholar
  34. 34.
    L. Li, J. Opt. Soc. Am. A 13, 1870 (1996)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Electronic and Optical Engineering & College of Microelectronics, Nanjing University of Posts and TelecommunicationsNanjingP.R. China
  2. 2.National Electronic Science and Technology Experimental Teaching Demonstrating Center, Nanjing University of Posts and TelecommunicationsNanjingP.R. China
  3. 3.National Information and Electronic Technology Virtual Simulation Experiment Teaching Center, Nanjing University of Posts and TelecommunicationsNanjingP.R. China
  4. 4.Key Laboratory of Radar Imaging and Microwave Photonics (Nanjing Univ. Aeronaut. Astronaut.), Ministry of Education, Nanjing University of Aeronautics and AstronauticsNanjingP.R. China
  5. 5.State Key Laboratory of Millimeter Waves of Southeast UniversityNanjingP.R. China

Personalised recommendations