Advertisement

Resonance fluorescence and quantum correlation of two-dimensional parabolic quantum dots: spin–orbit interaction effects

  • Behrooz VaseghiEmail author
  • Vajihe Azizi
  • Mahnaz Khosravi
  • Zahra Owjifard
Regular Article
  • 14 Downloads
Part of the following topical collections:
  1. Topical Issue: Quantum Correlations

Abstract

In the present study, we theoretically study the resonance fluorescence of a two-dimensional quantum dot with parabolic confinement under the effect of Rashba spin–orbit interaction and the magnetic field. We investigate the dependence of the resonance fluorescence and second-order correlation function on the strength of Rashba spin–orbit interaction and the magnetic field has. According to the numerical analyses conducted in this work, location and width of the peaks in the spectrum, as well as the second-order correlation function are modified by the Rashba spin–orbit interaction. In addition, our results show that the presence of magnetic field leads to the strong modification of both the resonance fluorescence spectrum and the second-order correlation function. Overall Rashba spin–orbit interaction and magnetic field can be used for the arbitrary control of the resonance fluorescence characteristics in a quantum dot.

Graphical abstract

References

  1. 1.
    J.B. Khurgin, G. Sun, L.R. Friedman, R.A. Soref, J. Appl. Phys. 78, 7398 (1995) ADSCrossRefGoogle Scholar
  2. 2.
    S.M. Sadeghi, S.R. Leffler, J. Meyer, Phys. Rev. B 59, 15388 (1999) ADSCrossRefGoogle Scholar
  3. 3.
    T.G. Ismailov, B.H. Mehdiyev, Physica E 31, 72 (2006) ADSCrossRefGoogle Scholar
  4. 4.
    C. Guan, Y. Xing, C. Zhang, Z. Ma, Appl. Phys. Lett. 102, 163116 (2013) ADSCrossRefGoogle Scholar
  5. 5.
    A. Khaledi-Nasab, M. Sabaeian, M. Sahrai, V. Fallahi, J. Opt. 16, 055004 (2014) ADSCrossRefGoogle Scholar
  6. 6.
    M. Sahrai, M.R. Mehmannavaz, H. Sattari, Appl. Opt. 53, 2375 (2014) ADSCrossRefGoogle Scholar
  7. 7.
    H. Htoon, T. Takagahara, D. Kulik, O. Baklenov, A.L. Holmes Jr., C.K. Shih, Phys. Rev. Lett. 88, 087401 (2002) ADSCrossRefGoogle Scholar
  8. 8.
    B.D. Gerardot, D. Brunner, P.A. Dalgarno, P. Öhberg, S. Seidl, M. Kroner, K. Karrai, N.G. Stoltz, P.M. Petroff, R.J. Warburton, Nature 451, 441 (2008) ADSCrossRefGoogle Scholar
  9. 9.
    E.B. Flagg, A. Muller, J.W. Robertson, S. Founta, D.G. Deppe, M. Xiao, W. Ma, G.J. Salamo, C.K. Shih, Nat. Phys. 5, 203 (2009) CrossRefGoogle Scholar
  10. 10.
    B.R. Mollow, Phys. Rev. 188, 1969 (1969) ADSCrossRefGoogle Scholar
  11. 11.
    X. Xu, B. Sun, P.R. Berman, D.G. Steel, A.S. Bracker, D. Gammon, L.J. Sham, Science 317, 929 (2007) ADSCrossRefGoogle Scholar
  12. 12.
    C.R. Ooi, E.A. Sete, W.M. Liu, Phys. Rev. A 92, 063847 (2015) ADSCrossRefGoogle Scholar
  13. 13.
    K.J. Ahn, J. Förstner, A. Knorr, Phys. Rev. B 71, 153309 (2005) ADSCrossRefGoogle Scholar
  14. 14.
    R. Sánchez, G. Platero, T. Brandes, Phys. Rev. Lett. 98, 146805 (2007) ADSCrossRefGoogle Scholar
  15. 15.
    A. Muller, E.B. Flagg, P. Bianucci, X.Y. Wang, GD.G. Deppe, W. Ma, J. Zhang, G.J. Salamo, M. Xiao, C.K. Shih, Phys. Rev. Lett. 99, 187402 (2007) ADSCrossRefGoogle Scholar
  16. 16.
    R. Sánchez, G. Platero, T. Brandes, Phys. Rev. B 78, 125308 (2008) ADSCrossRefGoogle Scholar
  17. 17.
    A. Moelbjerg, P. Kaer, M. Lorke, J. Mørk, Phys. Rev. Lett. 108, 017401 (2012) ADSCrossRefGoogle Scholar
  18. 18.
    F. Carreño, M.A. Antón, F. Arrieta-Yáñez, Phys. Rev. B 88, 195303 (2013) ADSCrossRefGoogle Scholar
  19. 19.
    J.M. Zajac, S.I. Erlingsson, Phys. Rev. B 94, 035432 (2016) ADSCrossRefGoogle Scholar
  20. 20.
    G.Y. Kryuchkyan, V. Shahnazaryan, O.V. Kibis, I.A. Shelykh, Phys. Rev. A 95, 013834 (2017) ADSCrossRefGoogle Scholar
  21. 21.
    H. Hassanabadi, H. Rahimov, L. Lu, C. Wang, J. Luminesc. 132, 1095 (2012) ADSCrossRefGoogle Scholar
  22. 22.
    O. Aytekin, S. Turgut, M. Tomak, Physica E 64, 29 (2014) ADSCrossRefGoogle Scholar
  23. 23.
    B. Gisi, S. Sakiroglu, E. Kasapoglu, H. Sari, I. Sokmen, Superlatt. Microstruct. 86, 166 (2015) ADSCrossRefGoogle Scholar
  24. 24.
    M. Kumar, S. Lahon, P.K. Jha, S. Gumber, M. Mohan, Physica B 438, 29 (2014) ADSCrossRefGoogle Scholar
  25. 25.
    B. Vaseghi, G. Rezaei, V. Azizi, Opt. Quant. Electron. 42, 841 (2011) CrossRefGoogle Scholar
  26. 26.
    B. Vaseghi, G. Rezaei, V. Azizi, S.M. Azami, Physica E 44, 1241 (2012) ADSCrossRefGoogle Scholar
  27. 27.
    B. Vaseghi, G. Rezaei, M. Malian, Opt. Commun. 287, 241 (2013) ADSCrossRefGoogle Scholar
  28. 28.
    M. Jin, W. Xie, Superlatt. Microstruct. 73, 330 (2014) ADSCrossRefGoogle Scholar
  29. 29.
    E.I. Rashba, Sov. Phys. Solid State 2, 1109 (1960) Google Scholar
  30. 30.
    T. Chakraborty, P. Pietiläinen, Phys. Rev. Lett. 95, 13 (2005) Google Scholar
  31. 31.
    Y.A. Bychkov, E.I. Rashba, JETP Lett. 39, 66 (1984) Google Scholar
  32. 32.
    G. Dresselhaus, Phys. Rev. 100, 580 (1955) ADSCrossRefGoogle Scholar
  33. 33.
    B. Vaseghi, S.M. Razavi, Physica B 506, 23 (2017) ADSCrossRefGoogle Scholar
  34. 34.
    M.O. Scully, S.M. Zubairy, Quantum Optics (Cambridge University Press, Cambridge, 2008) Google Scholar
  35. 35.
    R. Loudon, The Quantum Theory of Light (Oxford University Press, Oxford, 2000) Google Scholar
  36. 36.
    O. Voskoboynikov, C.P. Lee, O. Tretyak, Phys. Rev. B 63, 165306 (2001) ADSCrossRefGoogle Scholar
  37. 37.
    O. Voskoboynikov, O. Bauga, C.P. Lee, O. Tretyak, J. Appl. Phys. 94, 5891 (2003) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Behrooz Vaseghi
    • 1
    Email author
  • Vajihe Azizi
    • 1
  • Mahnaz Khosravi
    • 1
  • Zahra Owjifard
    • 1
  1. 1.Department of PhysicsCollege of Sciences, Yasouj UniversityYasoujIran

Personalised recommendations