Advertisement

The pH value control in air plasma–liquid system by sodium bicarbonate

  • Bangbang He
  • Xinning Gong
  • Yupengxue Ma
  • Xin Wang
  • Junshuai Li
  • Qing Xiong
  • Qiang ChenEmail author
Regular Article
  • 44 Downloads

Abstract

The pH value of an aqueous solution usually decreases when treated by air discharge plasma due to the formation of HNO2 and HNO3 in solution. Herein, we found that the existence of a pH-buffer material, sodium bicarbonate (NaHCO3), can maintain or even increase the solution pH value in an air plasma–liquid system depending on the discharge conditions such as the temperature and the voltage polarity of the liquid. When acidic compounds (for instance, HNO2 and HNO3) are produced by the plasma–liquid interactions, the bicarbonate ions (HCO3) existing in the solution can combine with the produced hydrogen ions (H+) to form carbonic acid molecules (H2CO3), resulting in the maintaining of the solution pH value. However, the formed H2CO3 might be decomposed to produce water (H2O) and carbon dioxide (CO2) by the discharge plasma-induced heat, leading to a continuous consumption of H+ ions in the solution. As the quantity of H+ ions consumed by the decomposition of H2CO3 is greater than the quantity of H+ ions produced by air discharge plasma, the solution pH value will increase.

Graphical abstract

Keywords

Plasma Physics 

References

  1. 1.
    X. Wang, M. Zhou, X. Jin, Electrochim. Acta 83, 501 (2012) CrossRefGoogle Scholar
  2. 2.
    G. Fridman, G. Friedman, A. Gutsol, A.B. Shekhter, V.N. Vasilets, A. Fridman, Plasma Process. Polym. 5, 503 (2008) Google Scholar
  3. 3.
    D. Mariotti, R.M. Sankaran, J. Phys. D: Appl. Phys. 43, 323001 (2010) ADSCrossRefGoogle Scholar
  4. 4.
    G. Saito, T. Akiyama, J. Nanomater. 16, 299 (2015) Google Scholar
  5. 5.
    J. Liu, B. He, Q. Chen, J. Li, Q. Xiong, G. Yue, X. Zhang, S. Yang, H. Liu, Q.H. Liu, Sci. Rep. 6, 38454 (2016) ADSCrossRefGoogle Scholar
  6. 6.
    V.S.K. Kondeti, U. Gangal, S. Yatom, P.J. Bruggeman, J. Vac. Sci. Technol. A 35, 061302 (2017) CrossRefGoogle Scholar
  7. 7.
    S.K.S. Gupta, Plasma Chem. Plasma Process. 37, 897 (2017) CrossRefGoogle Scholar
  8. 8.
    Q. Chen, J. Li, Y. Li, J. Phys. D: Appl. Phys. 48, 424005 (2015) ADSCrossRefGoogle Scholar
  9. 9.
    M. Brettholle, O. Höfft, L. Klarhöfer, S. Mathes, W. Maus-Friedrichs, S.Z. El Abedin, S. Krischok, J. Janek, F. Endres, Phys. Chem. Chem. Phys. 12, 1750 (2010) CrossRefGoogle Scholar
  10. 10.
    O. Höfft, F. Endres, Phys. Chem. Chem. Phys. 13, 13472 (2011) CrossRefGoogle Scholar
  11. 11.
    C. Richmonds, R.M. Sankaran, Appl. Phys. Lett. 93, 131501 (2008) ADSCrossRefGoogle Scholar
  12. 12.
    X. Huang, X. Zhong, Y. Lu, Y. Li, A. Rider, S. Furman, K. Ostrikov, Nanotechnonlogy 24, 095604 (2013) ADSCrossRefGoogle Scholar
  13. 13.
    K. Baba, T. Kaneko, R. Hatakeyama, K. Motomiya, K. Tohji, Chem. Commun. 46, 255 (2009) CrossRefGoogle Scholar
  14. 14.
    T. Kaneko, K. Baba, T. Harada, R. Hatakeyama, Plasma Process. Polym. 6, 713 (2009) Google Scholar
  15. 15.
    T. Shirafuji, J. Ueda, A. Nakamura, S.-P. Cho, N. Saito, O. Takai, Jpn. J. Appl. Phys. 52, 126202 (2013) ADSCrossRefGoogle Scholar
  16. 16.
    N. Misra, O. Schlüter, P.J. Cullen, Cold Plasma in Food and Agriculture: Fundamentals and Applications (Academic Press, London, 2016) Google Scholar
  17. 17.
    J.-L. Brisset, E. Hnatiuc, Plasma Chem. Plasma Process. 32, 655 (2012) CrossRefGoogle Scholar
  18. 18.
    Q. Chen, H. Shirai, Eur. Phys. J. D 66, 161 (2012) ADSCrossRefGoogle Scholar
  19. 19.
    Q. Chen, J. Li, K. Saito, H. Shirai, J. Phys. D: Appl. Phys. 41, 175212 (2008) ADSCrossRefGoogle Scholar
  20. 20.
    P. Rumbach, M. Witzke, R.M. Sankaran, D.B. Go, J. Am. Chem. Soc. 135, 16264 (2013) CrossRefGoogle Scholar
  21. 21.
    V.L. Lobachev, E.S. Rudakov, Russ. Chem. Rev. 75, 375 (2006) ADSCrossRefGoogle Scholar
  22. 22.
    B.M. Cadorin, V.D. Tralli, E. Ceriani, L.O. de Brito Benetoli, E. Marotta, C. Ceretta, N.A. Debacher, C. Paradisi, J. Hazard. Mater. 300, 754 (2015) CrossRefGoogle Scholar
  23. 23.
    A. Simon, T. Fujioka, W.E. Price, L.D. Nghiem, Sep. Purif. Technol. 127, 70 (2014) CrossRefGoogle Scholar
  24. 24.
    B. He, Y. Ma, X. Gong, Z. Long, J. Li, Q. Xiong, H. Liu, Q. Chen, X. Zhang, S. Yang, J. Phys. D: Appl. Phys. 50, 445207 (2017) ADSCrossRefGoogle Scholar
  25. 25.
    P. Bruggeman, J. Liu, J. Degroote, M.G. Kong, J. Vierendeels, C. Leys, J. Phys. D: Appl. Phys. 41, 215201 (2008) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Bangbang He
    • 1
  • Xinning Gong
    • 1
  • Yupengxue Ma
    • 1
  • Xin Wang
    • 1
  • Junshuai Li
    • 2
  • Qing Xiong
    • 3
  • Qiang Chen
    • 1
    Email author
  1. 1.Department of Electronic ScienceFujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Institute of Electromagnetics and Acoustics, Xiamen UniversityXiamenP.R. China
  2. 2.Key Laboratory of Special Function Materials & Structure Design of the Ministry of Education, School of Physical Science & Technology, Lanzhou UniversityLanzhouP.R. China
  3. 3.State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing UniversityChongqingP.R. China

Personalised recommendations