Advertisement

Monte-Carlo study of the effect of small admixture of iron atoms on the energy absorbed by solid disordered neon irradiated by near-Fe1s-threshold photons

  • Andrei G. KochurEmail author
  • Alexander P. Chaynikov
  • Victor A. Yavna
Regular Article
  • 5 Downloads

Abstract

Energy absorption processes in iron-doped solid disordered neon under photon irradiation are studied by Monte Carlo simulation with accurate accounting for the processes of the cascade decay of vacancies in the electron shells of ionized atoms. Cascade decay processes of ionized atoms in matter under ionizing radiation are demonstrated to be a crucial factor in the mechanisms of energy absorption in irradiated samples. Small (0.25–4%) admixtures of iron atoms to solid neon samples lead to noticeable enhancement of energy absorption in a sample (1.2–2.7 times) at incident photon energies exceeding Fe1s ionization threshold. Since the neon atom is isoelectronic with H2O, this effect may well be expected in tissues of organisms under ionizing radiation.

Keywords

Atomic Physics 

References

  1. 1.
    S. Brühl, A.G. Kochur, J. Phys. B: At. Mol. Opt. Phys. 43, 105002 (2010)ADSCrossRefGoogle Scholar
  2. 2.
    S. Brühl, A.G. Kochur, J. Phys. B: At. Mol. Opt. Phys. 45, 135003 (2012)ADSCrossRefGoogle Scholar
  3. 3.
    A.G. Kochur, A.P. Chaynikov, V.A. Yavna, Eur. Phys. J. D 71, 282 (2017)ADSCrossRefGoogle Scholar
  4. 4.
    A.G. Kochur, A.I. Dudenko, V.L. Sukhorukov, I.D. Petrov, J. Phys. B.: At. Mol. Opt. Phys. 27, 1709 (1994)ADSCrossRefGoogle Scholar
  5. 5.
    A.G. Kochur, V.L. Sukhorukov, A.I. Dudenko, P.V. Demekhin, J. Phys. B.: At. Mol. Opt. Phys. 28, 387 (1995)ADSCrossRefGoogle Scholar
  6. 6.
    R. Kau, I.D. Petrov, V.L. Sukhorukov, Z. Phys. D 39, 267 (1997)ADSCrossRefGoogle Scholar
  7. 7.
    C. Wälzlein, E. Scifoni, M. Krämer, M. Durante, Phys. Med. Biol. 59, 1441 (2014)CrossRefGoogle Scholar
  8. 8.
    F. Vernimmen, M.L. Shmatov, J. Biomater. Nanobiotechnol. 6, 204 (2015)CrossRefGoogle Scholar
  9. 9.
    M.L. Shmatov, PEPAN Lett. 13, 808 (2016)Google Scholar
  10. 10.
    M.A. Dolgopolov, I.V. Kopytin, Vestnik Voronezhskogo Gosudarstvennogo Universiteta. Ser. Phys. Math. 1, 5 (2010)Google Scholar
  11. 11.
    J. Allison, K. Amako, J. Apostolakis, P. Arce, M. Asai, T. Aso, E. Bagli, A. Bagulya, S. Banerjee, G. Barrand, B.R. Beck, A.G. Bogdanov, D. Brandt, J.M.C. Brown, H. Burkhardt, Ph. Canal, D. Cano-Ott, S. Chauvie, K. Cho, G.A.P. Cirrone, G. Cooperman, M.A. Cortés-Giraldo, G. Cosmo, G. Cuttone, G. Depaola, L. Desorgher, X. Dong, A. Dotti, V.D. Elvira, G. Folger, Z. Francis, A. Galoyan, L. Garnier, M. Gayer, K.L. Genser, V.M. Grichine, S. Guatelli, P. Guèye, P. Gumplinger, A.S. Howard, I. Hrivnácová, S. Hwang, S. Incerti, A. Ivanchenko, V.N. Ivanchenko, F.W. Jones, S.Y. Jun, P. Kaitaniemi, N. Karakatsanis, M. Karamitros, M. Kelsey, A. Kimura, T. Koi, H. Kurashige, A. Lechner, S.B. Lee, F. Longo, M. Maire, D. Mancusi, A. Mantero, E. Mendoza, B. Morgan, K. Murakami, T. Nikitina, L. Pandola, P. Paprocki, J. Perl, I. Petrovic, M.G. Pia, W. Pokorski, J.M. Quesada, M. Raine, M.A. Reis, A. Ribon, A. Ristic Fira, F. Romano, G. Russo, G. Santin, T. Sasaki, D. Sawkey, J.I. Shin, I.I. Strakovsky, A. Taborda, S. Tanaka, B. Tomé, T. Toshito, H.N. Tran, P.R. Truscott, L. Urban, V. Uzhinsky, J.M. Verbeke, M. Verderi, B.L. Wendt, H. Wenzel, D.H. Wright, D.M. Wright, T. Yamashita, J. Yarba, H. Yoshida, Nucl. Instr. Meth. Phys. Res. A 835, 186 (2016)ADSCrossRefGoogle Scholar
  12. 12.
    J. Sempau, J.M. Fernandez-Varea, E. Acosta, F. Salvat, Nucl. Instr. Meth. Phys. Res. B 207, 107 (2003)ADSCrossRefGoogle Scholar
  13. 13.
    C. Wälzlein, M. Krämer, E. Scifoni, M. Durante, Nucl. Instr. Meth. Phys. Res. B 320, 75 (2014)ADSCrossRefGoogle Scholar
  14. 14.
    A.G. Kochur, A.P. Chaynikov, V.A. Yavna, Eur. Phys. J. D 70, 70 (2016)ADSCrossRefGoogle Scholar
  15. 15.
    V.L. Sukhorukov, V.F. Demekhin, V.V. Timoshevskaya, S.V. Lavrentiev, Opt. Spectrosc. (USSR) 47, 228 (1979)ADSGoogle Scholar
  16. 16.
    A.P. Chaynikov, A.G. Kochur, V.A. Yavna, Opt. Spectrosc. 119, 171 (2015)ADSCrossRefGoogle Scholar
  17. 17.
    G.A. Kalinchenko, I.G. Ivanov, M.F. Sem, A.G. Kochur, V.L. Sukhorukov, J. Phys. D: Appl. Phys. 31, 50 (1998)ADSCrossRefGoogle Scholar
  18. 18.
    M.J. Berger, J.H. Hubbell, S.M. Seltzer, J. Chang, J.S. Coursey, R. Sukumar, D.S. Zucker, K. Olsen, XCOM: Photon Cross Section Database (version 1.5), 1 February 2018 , (National Institute of Standards and Technology, Gaithersburg, MD, 2010) Available: https://doi.org/physics.nist.gov/xcom
  19. 19.
    V.L. Sukhorukov, A.I. Dudenko, M.E. Vasil’eva, A.P. Dement’ev Izv, Akad. Nauk SSSR. Ser. Fiz. (USSR) 55, 2472 (1991)Google Scholar
  20. 20.
    E. Scifoni, E. Surdutovich, A. V.Solov’yov, Phys. Rev. E 81, 021903 (2010)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Andrei G. Kochur
    • 1
    Email author
  • Alexander P. Chaynikov
    • 1
  • Victor A. Yavna
    • 1
  1. 1.Rostov State Transport UniversityRostov-na-DonuRussia

Personalised recommendations