Advertisement

Plasma diagnostic opportunities from a positron beam

  • 8 Accesses

Abstract

We investigate the suitability of using a positron beam to obtain information about low-temperature plasmas. We have simulated the propagation of positrons using a stochastic particle-track Monte Carlo simulation in an argon plasma. Our study focuses on the bulk of the plasma, including all the interactions of a positron with the neutral and charged particles of varying electron temperature and ionisation fraction. We interpret our results in the context of experimentally observable quantities and identify several potential signatures of the plasma parameters. Our results indicate that, even in a more complex experimental setup, the ionisation fraction and electron temperature should be able to be determined.

Graphical abstract

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

References

  1. 1.

    I. Adamovich, S.D. Baalrud, A. Bogaerts, et al., J. Phys. D: Appl. Phys. 50, 323001 (2017)

  2. 2.

    P.J. Bruggeman, M.J. Kushner, B.R. Locke, et al., Plasma Sources Sci. Technol. 25, 053002 (2016)

  3. 3.

    I.H. Hutchinson, Principles of Plasma Diagnostics. 2nd edn. (Cambridge University Press, 2002)

  4. 4.

    T.J. Babij, J.R. Machacek, D.J. Murtagh, et al., Phys. Rev. Lett. 120, 113401 (2018)

  5. 5.

    J.R. Danielson, D.H. Dubin, R.G. Greaves, et al., Rev. Mod. Phys. 87, 247 (2015)

  6. 6.

    M.R. Natisin, J.R. Danielson, C.M. Surko, Appl. Phys. Lett. 108 (2016).

  7. 7.

    M. Charlton, J.W. Humberston, Positron Physics, Cambridge Monographs on Atomic, Molecular and Chemical Physics (Cambridge University Press, 2000)

  8. 8.

    Y.C. Jean, P.E. Mallon, D.M. Schrader, Principles and Applications of Positron and Positronium Chemistry (World Scientific, 2003)

  9. 9.

    D.W. Gidley, H.-G. Peng, R.S. Vallery, Annu. Rev. Mater. Res. 36, 49 (2006)

  10. 10.

    D.B. Graves, Phys. Plasmas 21, 080901 (2014)

  11. 11.

    K.-D. Weltmann, T. von Woedtke, Plasma Phys. Controlled Fusion 59, 014031 (2017)

  12. 12.

    C.M. Surko, M. Leventhal, W.S. Crane, et al., Rev. Sci. Instrum. 57, 1862 (1986)

  13. 13.

    T.J. Murphy, Plasma Phys. Controlled Fusion 29, 549 (1987)

  14. 14.

    T.S. Pedersen, J.R. Danielson, C. Hugenschmidt, et al., New J. Phys. 14, 035010 (2012)

  15. 15.

    I.J. Lazarus, Electrostatic waves in magnetized electron-positron plasmas, , in Charged Particles (IntechOpen, 2018)

  16. 16.

    M. Charlton, J. Phys.: Conf. Ser. 162, 012003 (2009)

  17. 17.

    S. Marjanović, A. Banković, R.D. White, et al., Plasma Sources Sci. Technol. 24, 025016 (2015)

  18. 18.

    R. Robson, R. White, M. Hildebrandt, Fundamentals of Charged Particle Transport in Gases and Condensed Matter (CRC Press, London, 2017)

  19. 19.

    W.J. Tattersall, D.G. Cocks, G.J. Boyle, et al., Plasma Sources Sci. Technol. 26, 045010 (2017)

  20. 20.

    Z. Ristivojevic, Z.L. Petrović, Plasma Sources Sci. Technol. 21, 035001 (2012)

  21. 21.

    S. Dujko, R.D. White, Z.L. Petrovic, J. Phys. D: Appl. Phys. 41, 245205 (2008)

  22. 22.

    D.G. Cocks, H. Chaudhary, J.R. Machacek, Astrophys. J. 878, 123 (2019)

  23. 23.

    H.R. Skullerud, J. Phys. D: Appl. Phys. 1, 1567 (1968)

  24. 24.

    M. Šuvakov, Z.L. Petrović, J.P. Marler, et al., New J. Phys. 10, 053034 (2008)

  25. 25.

    J.P. Marler, J.P. Sullivan, C.M. Surko, Phys. Rev. A 71, 1 (2005)

  26. 26.

    L.A. Parcell, R.P. McEachran, A.D. Stauffer, Nucl. Instrum. Methods Phys. Res. Sect. B 171, 113 (2000)

  27. 27.

    A.C.L. Jones, C. Makochekanwa, P. Caradonna, et al., Phys. Rev. A 83, 1 (2011)

  28. 28.

    J.P. Marler, L.D. Barnes, S.J. Gilbert, et al., Nucl. Instrum. Methods Phys. Res. Sect. B 221, 84 (2004)

  29. 29.

    A.V. Bobylev, I.F. Potapenko, J. Comput. Phys. 246, 123 (2013)

  30. 30.

    Z.L. Petrović, I. Simonović, S. Marjanović, et al., Plasma Phys. Controlled Fusion 59, 014026 (2017)

  31. 31.

    D.G. Green, Phys. Rev. Lett. 119, 2 (2017)

Download references

Author information

Correspondence to Daniel Cock.

Additional information

Contribution to the Topical Issue “Low-Energy Positron and Positronium Physics and Electron-Molecule Collisions and Swarms (POSMOL 2019)”, edited by Michael Brunger, David Cassidy, Saša Dujko, Dragana Marić, Joan Marler, James Sullivan, Juraj Fedor

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nyffenegger-Pere, Y., Cock, D. Plasma diagnostic opportunities from a positron beam. Eur. Phys. J. D 74, 6 (2020) doi:10.1140/epjd/e2019-100479-6

Download citation