Advertisement

Electronic excitation of H2O by positron impact

  • Felipe ArretcheEmail author
  • Marcos V. Barp
  • Eliton Popovicz Seidel
  • Wagner Tenfen
Regular Article
  • 9 Downloads
Part of the following topical collections:
  1. Topical Issue: Low-Energy Positron and Positronium Physics and Electron-Molecule Collisions and Swarms (POSMOL 2019)

Abstract

The electronic excitation of H2O molecule by positron impact for the (1b1→4a1)1B1 and (3a1→4a1)1A1 transitions has been calculated from threshold to 60 eV. The calculations were performed with the Schwinger multichannel method considering two and three channel-coupling schemes. We have found that the electronic excitation cross sections induced by positron impact show negligible dependence with the number of collision channels taken into account and seem to be always smaller or at most of the same magnitude than the corresponding ones for electrons using similar representations for the target excited states. The calculated cross sections exhibit lower magnitude when compared to the experimental data of Tattersall et al. [W. Tattersall, L. Chiari, J.R. Machacek, E. Anderson, R.D.White, M.J. Brunger, S.J. Buckman, G. Garcia, F. Blancoand J.P. Sullivan, J. Chem. Phys. 140, 044320 (2014)], while showing good agreement with the excitation cross sections recommended by Blanco et al. [F. Blanco, A.M. Roldán, K. Krupa, R.P. McEachran, R.D. White, S. Marjanović, Z. Lj. Petrović, M.J. Brunger, J.R. Machacek, S.J. Buckman, J.P. Sullivan, L. Chiari, P. Limão-Vieira, G. García, J. Phys. B: At. Mol. Opt. Phys. 49, 145001 (2016)] for energies above 30 eV. Perspectives to go beyond this prelusive investigation on positron-H2O electronic excitation, such as inclusion of target polarization effects, are discussed.

Graphical abstract

References

  1. 1.
    C. Champion, Phys. Med. Biol. 48, 2147 (2003).CrossRefGoogle Scholar
  2. 2.
    C. Champion, C. Le Loired, Phys. Med. Biol. 51, 1707 (2006).CrossRefGoogle Scholar
  3. 3.
    K. Ratnavelu, M.J. Brunger, S.J. Buckman, J. Phys. Chem. Ref. Data 48, 023102 (2019).ADSCrossRefGoogle Scholar
  4. 4.
    M.J. Brunger, S.J. Buckman, K. Ratnavelu, J. Phys. Chem. Ref. Data 46, 023102 (2017).ADSCrossRefGoogle Scholar
  5. 5.
    W. Tattersall, L. Chiari, J.R. Machacek, E. Anderson, R.D. White, M.J. Brunger, S.J. Buckman, G. Garcia, F. Blanco, J.P. Sullivan, J. Chem. Phys. 140, 044320 (2014).ADSCrossRefGoogle Scholar
  6. 6.
    F. Blanco, A.M. Roldán, K. Krupa, R.P. McEachran, R.D. White, S. Marjanović, Z. Lj Petrović, M.J. Brunger, J.R. Machacek, S.J. Buckman, J.P. Sullivan, L. Chiari, P. Limão-Vieira, G. García, J. Phys. B: At. Mol. Opt. Phys. 49, 145001 (2016).ADSCrossRefGoogle Scholar
  7. 7.
    F.A. Gianturco, T. Mukherjee, A. Occhigrossi, Phys. Rev. A 64, 032715 (2001).ADSCrossRefGoogle Scholar
  8. 8.
    K.L. Baluja, R. Zhang, J. Franz, J. Tennyson, J. Phys. B: At. Mol. Opt. Phys. 40, 3515 (2007).ADSCrossRefGoogle Scholar
  9. 9.
    R. Zhang, A. Faure, J. Tennyson, Phys. Scr. 80, 015301 (2009).ADSCrossRefGoogle Scholar
  10. 10.
    K.L. Baluja, A. Jain, Phys. Rev. A 45, 7838 (1992).ADSCrossRefGoogle Scholar
  11. 11.
    N. Sinha, D. Patel, B. Anthony, Chemistry Select 4, 4575 (2019).Google Scholar
  12. 12.
    F. Arretche, W. Tenfen, K.T. Mazon, S.E. Michelin, M.A.P. Lima, M.-T. Lee, L.E. Machado, M.M. Fujimoto, O.A. Pessoa, Nucl. Instrum. Methods Phys. Res. B 268, 178 (2010).ADSCrossRefGoogle Scholar
  13. 13.
    A. Zecca, D. Sanyal, M. Chakrabarti, M.J. Brunger, J. Phys. B: At. Mol. Opt. Phys. 39, 1597 (2006).ADSCrossRefGoogle Scholar
  14. 14.
    J.S.E. Germano, M.A.P. Lima, Phys. Rev. A 47, 3976 (1993).ADSCrossRefGoogle Scholar
  15. 15.
    F. Arretche, M.A.P. Lima, Phys. Rev. A 74, 042713 (2006).ADSCrossRefGoogle Scholar
  16. 16.
    M.T.N. Varella, C.R.C. de Carvalho, M.A.P. Lima, Nucl. Instrum. Methods Phys. Res. B 192, 225 (2002).ADSCrossRefGoogle Scholar
  17. 17.
    P. Chaudhuri, M.T.N. Varella, C.R.C. de Carvalho, M.A.P. Lima, Nucl. Instrum. Methods Phys. Res. B 221, 69 (2004).ADSCrossRefGoogle Scholar
  18. 18.
    T.J. Gil, T.N. Rescigno, C.W. McCurdy, B.H. Lengsfield III, Phys. Rev. A 45, 215206 (2012).Google Scholar
  19. 19.
    G. Herzberg, Molecular spectra and molecular structure, in Electronic spectra and electronic structure of polyatomic molecules (Van Nostrand, New York, 1967), Vol. 3.Google Scholar
  20. 20.
    W.J. Hunt, W.A. Goddard III, Chem. Phys. Lett. 3, 414 (1969).ADSCrossRefGoogle Scholar
  21. 21.
    U. Kaldor, J. Chem. Phys. 87, 467 (1987).ADSCrossRefGoogle Scholar
  22. 22.
    T.N. Rescino, B.I. Schneider, Phys. Rev. A 45, 2894 (1992).ADSCrossRefGoogle Scholar
  23. 23.
    R.F. da Costa, F.J. da Paixão, M.A.P. Lima, J. Phys. B: At. Mol. Opt. Phys. 38, 4363 (2005).ADSCrossRefGoogle Scholar
  24. 24.
    L. Hargreaves, K. Ralphs, G. Serna, M.A. Khakoo, C. Winstead, V. McKoy, J. Phys. B: At. Mol. Opt. Phys. 45, 201001 (2012).ADSCrossRefGoogle Scholar
  25. 25.
    K. Ralphs, G. Serna, L.R. Hargreaves, M.A. Khakoo, C. Winstead, V. McKoy, J. Phys. B: At. Mol. Opt. Phys. 46, 125201 (2013).ADSCrossRefGoogle Scholar
  26. 26.
    J.L.S. Lino, J.S.E. Germano, M.A.P. Lima, J. Phys. B: At. Mol. Opt. Phys. 27, 1881 (1994).ADSCrossRefGoogle Scholar
  27. 27.
    K. Fox, J.E. Turner, J. Chem. Phys. 45, 1142 (1966).ADSCrossRefGoogle Scholar
  28. 28.
    J.-M. Lévy-Leblond, Phys. Rev. 153, 1 (1967).ADSCrossRefGoogle Scholar
  29. 29.
    P.-A. Hervieux, O.A. Fojon, C. Champion, R.D. Rivarola, J. Hanssen, J. Phys. B: At. Mol. Opt. Phys. 39, 409 (2006).ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2020

Authors and Affiliations

  • Felipe Arretche
    • 1
    Email author
  • Marcos V. Barp
    • 1
  • Eliton Popovicz Seidel
    • 1
  • Wagner Tenfen
    • 2
  1. 1.Departamento de Física, Universidade Federal de Santa CatarinaFlorianópolisBrazil
  2. 2.Instituto de Física e Matemática, Universidade Federal de PelotasPelotasBrazil

Personalised recommendations