Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Three-dimensional modified Korteweg-de Vries equation in a magnetised relativistic plasma with positron beam and vortex-like electron distribution

  • 21 Accesses

Abstract

The nonlinear features of Ion Acoustic (IA) waves are studied in a fully relativistic three-dimensional (3-D) plasma system with consideration of effect of both positron beam and trapped electrons. We consider a set of 3-D magnetised hydrodynamic equations with pressure expansion for our plasma model along with kinetic Vlasov equation for electrons. Applying the perturbative expansion technique, a Modified Korteweg-de Vries (m-KdV)-like equation is derived, exhibiting the evolution of small amplitude IA waves in plasma. The modified coefficient of nonlinear term in K-dV equation has arrived due to impact of vortex-like distribution of electrons. An analytical and numerical investigation of the nonlinear evolution equations is exhibited with external magnetic field effects, the time derivative pressure expansion as well as other parameters like relativistic effect, mass variation, beam velocity and temperature effect have been taken into consideration. The presence of vortex like trapped electron distribution and positron beam governs the influence of soliton structure quite significantly. The present result should help us to understand the experiments that involve particle trapping and also the salient features of astrophysical environment like ionospheric plasma together with situations in plasma describing the electrostatic solitary structures usually seen in antimatter-related environment in interplanetary region.

Graphical abstract

This is a preview of subscription content, log in to check access.

References

  1. 1.

    H.L. Berk, K.V. Roberts, Phys. Fluids 10, 1595 (1967)

  2. 2.

    R.L. Morse, C.W. Nielson, Phys. Rev. Lett. 23, 1087 (1969)

  3. 3.

    N.C. Adhikary, M.K. Deka, A.N. Dev, J. Sarmah, Phys. Plasmas 21, 083703 (2014)

  4. 4.

    N.C. Adhikary, A.P. Misra, M.K. Deka, A.N. Dev, Phys. Plasmas 24, 073703 (2017)

  5. 5.

    M. Kako, T. Tanuiti, T. Watanabe, J. Phys. Soc. Jpn. 31, 1820 (1971)

  6. 6.

    I.B. Bernstein, J.M. Greene, M.D. Kruskal, Phys. Rev. 108, 546 (1957)

  7. 7.

    N. Iwamoto, Phys. Rev. E 47, 604 (1993)

  8. 8.

    G.P. Zank, R.G. Greaves, Phys. Rev. E 51, 6079 (1995)

  9. 9.

    H.G. Abdelwahed, E.K. El-Shewy, A.A. Mahmoud, Chin. Phys. Lett. 34, 035202 (2007)

  10. 10.

    A.N. Dev, Chin. Phys. B 26, 025203 (2017)

  11. 11.

    J. Duris, et al., Nat. Commun. 5, 4928 (2014)

  12. 12.

    R. Hu, B. Liu, H. Lu, M. Zhou, C. Lin, Z. Sheng, C.-E. Chen, X. He, X. Yan, Nat. Sci. Rep. 5, 15499 (2015)

  13. 13.

    P. Chen, J.M. Dawson, R.W. Hu, T. Katsouleas, Phys. Rev. Lett. 54, 693 (1985)

  14. 14.

    E. Hemsing, A. Knyazik, F. O’Shea, A. Marinelli, P. Musumeci, O. Williams, S. Tochitsky, J.B. Rosenzweig, Appl. Phys. Lett. 100, 091110 (2012)

  15. 15.

    C. Joshi, T. Katsouleas, J.M. Dawson, Y.T. Yan, J.M. Slater, IEEE J. Quantum Electron. 23, 1571 (1987)

  16. 16.

    R. Fedele, V.G. Vaccaro, G. Miano, Phys. Scr. T30, 192 (1990)

  17. 17.

    R.L. Williams, C.E. Clayton, C. Joshi, T.C. Katsouleas, IEEE Trans. Plasma Sci. 21, 156 (1993)

  18. 18.

    X. An, B. Van Compernolle, J. Bortnik, R.M. Thorne, L. Chen, W. Li, Geophys. Res. Lett. 43, 2413 (2016)

  19. 19.

    S.M. Mahajan, F.A. Asenjo, J. Plasma Phys. 83, 905830101 (2017)

  20. 20.

    S.A. Shan, S.A. El-Tantawy, W.M. Moslem, Phys. Plasmas 20, 082104 (2013)

  21. 21.

    A.V. Gurevich, Sov. Phys. JETP 26, 575 (1968), http://www.jetp.ac.ru/cgi-bin/e/index/e/26/3/p575?a=list

  22. 22.

    H.L. Berk, C.E. Nielsen, K.V. Roberts, Phys. Fluids 13, 980 (1970)

  23. 23.

    S.A. Shan, S.A. El-Tantawy, Phys. Plasmas 23, 072112 (2016)

  24. 24.

    Y.H. Alfven, P. Carlqvist, Sol. Phys. 1, 220 (1967)

  25. 25.

    J. Arons, Space Sci. Rev. 24, 417 (1979)

  26. 26.

    T. Tajima, T. Tanuiti, Phys. Rev. A 42, 3587 (1990)

  27. 27.

    G.C. Das, S.N. Paul, Phys. Fluids 28, 823 (1985)

  28. 28.

    H.H. Kuehl, C.Y. Zhang, Phys. Fluids B 3, 26 (1991)

  29. 29.

    D. Jovanovic, R. Fedele, M. Belic, S.D. Nicola, T. Akhter, Eur. Phys. J. D 72, 95 (2018)

  30. 30.

    S.K. El-Labany, H.O. Nafie, A. El-Sheikh, J. Plasma Phys. 56, 13 (1996)

  31. 31.

    G. Lehmann, K.H. Spatschek, Phys. Rev. E 83, 036401 (2011)

  32. 32.

    D. Lu, Z. Liang Li, B.-S. Xie, Phys. Rev. E 88, 033109 (2013)

  33. 33.

    C.M. Surko, T. Murphy, Phys. Fluids B 2, 1372 (1990)

  34. 34.

    F.B. Rizzato, J. Plasma Phys. 40, 289 (1988)

  35. 35.

    Y.N. Nejoh, Aust. J. Phys. 50, 309 (1997)

  36. 36.

    R.S. Tiwari, Phys. Lett. A 372, 3461 (2008)

  37. 37.

    S. Mahmood, H. Saleem, Phys. Plasmas 10, 4680 (2003)

  38. 38.

    T.S. Gill, A.S. Bains, N.S. Saini, Can. J. Phys. 87, 861 (2009)

  39. 39.

    J. Han, S. Du, W. Duan, Phys. Plasmas 15, 112104 (2008)

  40. 40.

    R. Sarma, G.C. Das, R. Das, N.C. Adhikary, Phys. Plasmas 25, 073704 (2018)

  41. 41.

    G.C. Das, R. Sarma, Phys. Plasmas 25, 043703 (2018)

  42. 42.

    M.G. Hafez, M.R. Talukder, Astrophys. Space Sci. 359, 27 (2015)

  43. 43.

    A.A. Mamun, R.A. Cairns, P.K. Shukla, Phys. Plasmas 3, 2610 (1996)

  44. 44.

    A. Mushtaq, J. Phys. A: Math. Theor. 43, 315501 (2010)

  45. 45.

    H. Alinejad, Phys. Lett. A 375, 1005 (2011)

  46. 46.

    H. Schamel, Phys. Plasmas 19, 020501 (2012)

  47. 47.

    G.C. Das, J. Sarma, M. Talukdar, Phys. Plasmas 5, 63 (1998)

  48. 48.

    G.C. Das, J. Sarma, Phys. Plasmas 5, 3918 (1998)

  49. 49.

    G.C. Das, S.N. Paul, Phys. Fluids 28, 823 (1985)

  50. 50.

    Y. Nejoh, Phys. Fluids B 4, 2830 (1992)

  51. 51.

    A. Esfandyari, S. Khorram, A. Rostami, Phys. Plasmas 8, 4753 (2001)

  52. 52.

    K. Singh, V. Kumar, Phys. Plasmas 12, 052103 (2005)

  53. 53.

    R. Roychoudhury, S. Bhattacharyya, Phys. Fluids 30, 2582 (1987)

  54. 54.

    K. Ghosh, D. Ray, Phys. Fluids B 3, 303 (1991)

  55. 55.

    H. Kuehl, C. Zhang, Phys. Fluids B 3, 555 (1991)

  56. 56.

    Y. Nejoh, H. Sanuki, Phys. Plasmas 1, 2154 (1994)

  57. 57.

    N.C. Lee, C.R. Choi, Phys. Plasmas 14, 022307 (2007)

  58. 58.

    E. Benkhelifa, M. Djebli, Laser Part. Beams 33, 273 (2015)

  59. 59.

    T. Katsouleas, W.B. Mori, Phys. Rev. Lett. 61, 90 (1988)

  60. 60.

    R. Svensson, Astrophys. J. 258, 335 (1982)

  61. 61.

    A.P. Misra, Appl. Math. Comput. 256, 368 (2015)

  62. 62.

    N.C. Adhikary, A.P. Misra, H. Bailung, J. Chutia, Phys. Plasmas 17, 044502 (2010)

  63. 63.

    A. Esfandyari-Kalejahi, M. Mehdipoor, M. Akbari Moghanjoughi, Phys. Plasmas 16, 052309 (2009)

  64. 64.

    J.P. Sullivan, S.J. Gilbert, J.P. Marler, R.G. Greaves, S.J. Buckman, C.M. Surko, Phys. Rev. A 66, 042708 (2002)

  65. 65.

    D.N. Langenberg, B.N. Taylor, Nat. Bur. Stand. (U.S.), Spec. Publ. 343, 543 (1971)

  66. 66.

    J. Bickford, Extraction of antiparticles concentrated in Planetary magnetic fields, Draper Laboratory, 555 Technology square, Cambridge, MA, 2006

  67. 67.

    T.S. Gill, A. Singh, H. Kaur, N.S. Saini, P. Bala, Phys. Lett. A 361, 364 (2007)

  68. 68.

    R. Sarma, A.P. Misra, N.C. Adhikary, Chin. Phys. B 27, 105207 (2018)

Download references

Author information

Correspondence to Ridip Sarma.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sarma, R., Dev, A.N., Boro, B. et al. Three-dimensional modified Korteweg-de Vries equation in a magnetised relativistic plasma with positron beam and vortex-like electron distribution. Eur. Phys. J. D 74, 23 (2020). https://doi.org/10.1140/epjd/e2019-100422-y

Download citation

Keywords

  • Plasma Physics