Advertisement

Enhanced tripartite entanglement via atomic coherence in atom-optomechanical system

  • Xuping Shao
  • Zhiyong Yin
  • Zhenghong Li
  • Xihua YangEmail author
Regular Article
  • 19 Downloads

Abstract

We present a scheme to greatly enhance tripartite entanglement in an atom-optomechanical hybrid system driven by a single input laser field. The enhancement of the tripartite entanglement among two longitudinal cavity modes and a mirror oscillation mode is realized via atomic coherence when the cavity free spectral range is about equal to twice the frequency of mechanical oscillation and both cavity modes are blue-detuned by the mechanical frequency to the respective atomic resonant transitions while keeping the two-photon resonance satisfied. Moreover, the entanglement between the two cavity modes exhibits robustness to the variation of the environment temperature. The present atom-assisted optomechanical system provides an alternative platform for the quantum state exchange between light and light, as well as light and matter.

Graphical abstract

Keywords

Quantum Optics 

References

  1. 1.
    D. Bouweester, A. Ekert, A. Zeilinger, The Physics of Quantum Information (Springer, Berlin, 2000)Google Scholar
  2. 2.
    M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000)Google Scholar
  3. 3.
    H.J. Kimble, Nature 453, 1023 (2008)ADSCrossRefGoogle Scholar
  4. 4.
    J.T. Jing, J. Zhang, Y. Yan, F.G. Zhao, C.D. Xie, K. Peng, Phys. Rev. Lett. 90, 167903 (2003)ADSCrossRefGoogle Scholar
  5. 5.
    P. Van Loock, S.L. Braunstein, Phys. Rev. Lett. 84, 3482 (2000)ADSCrossRefGoogle Scholar
  6. 6.
    P. Van Loock, A. Furusawa, Phys. Rev. A 67, 052315 (2003)ADSCrossRefGoogle Scholar
  7. 7.
    V. Boyer, A.M. Marino, R.C. Pooser, P.D. Lett, Science 321, 544 (2008)ADSCrossRefGoogle Scholar
  8. 8.
    X.H. Yang, M. Xiao, Sci. Rep. 5, 13609 (2015)ADSCrossRefGoogle Scholar
  9. 9.
    X.H. Yang, B.L. Xue, J.X. Zhang, S.Y. Zhu, Sci. Rep. 4, 6629 (2014)CrossRefGoogle Scholar
  10. 10.
    X.H. Yang, Y.Y. Zhou, M. Xiao, Phys. Rev. A 85, 052307 (2012)ADSCrossRefGoogle Scholar
  11. 11.
    L.M. Cao, J. Qi, J.J. Du, J.T. Jing, Phys. Rev. A 95, 023803 (2017)ADSCrossRefGoogle Scholar
  12. 12.
    M. Aspelmeyer, T.J. Kippenberg, F. Marquardt, Rev. Mod. Phys. 86, 1391 (2014)ADSCrossRefGoogle Scholar
  13. 13.
    X.H. Yang, Y. Ling, X.P. Shao, M. Xiao, Phys. Rev. A 95, 052303 (2017)ADSCrossRefGoogle Scholar
  14. 14.
    D. Vitali, S. Gigan, A. Ferreira, H.R. Bohm, P. Tombesi, A. Guerreiro, V. Vedral, A. Zeilinger, M. Aspelmeyer, Phys. Rev. Lett. 98, 030405 (2007)ADSCrossRefGoogle Scholar
  15. 15.
    L. Tian, Phys. Rev. Lett. 110, 233602 (2013)ADSCrossRefGoogle Scholar
  16. 16.
    S. Mancini, V. Giovannetti, D. Vitali, P. Tombesi, Phys. Rev. Lett. 88, 120401 (2002)ADSCrossRefGoogle Scholar
  17. 17.
    C. Genes, D. Vitali, P. Tombesi, Phys. Rev. A 77, 050307 (2008)ADSCrossRefGoogle Scholar
  18. 18.
    K. Hammerer, M. Aspelmeyer, E.S. Polzik, P. Zoller, Phys. Rev. Lett. 102, 020501 (2009)ADSCrossRefGoogle Scholar
  19. 19.
    H. Ian, Z.R. Gong, Y.-X. Liu, C.P. Sun, F. Nori, Phys. Rev. A 78, 013824 (2008)ADSCrossRefGoogle Scholar
  20. 20.
    X.H. Yang, J.Q. Liu, X.N. Yan, M. Xiao, J. Phys. B 51, 205501 (2018)ADSCrossRefGoogle Scholar
  21. 21.
    L. Zhou, Y. Han, J.T. Jing, W.P. Zhang, Phys. Rev. A 83, 052117 (2011)ADSCrossRefGoogle Scholar
  22. 22.
    K. Hammerer, M. Aspelmeyer, E.S. Polzik, P. Zoller, Phys. Rev. Lett. 102, 020501 (2009)ADSCrossRefGoogle Scholar
  23. 23.
    R. Benguria, M. Kac, Phys. Rev. Lett. 46, 1 (1981)ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    A.J. Merriam, S.J. Sharpe, M. Shverdin, D. Manuszak, G.Y. Yin, G.I. Harris, Phys. Rev. Lett. 84, 5308 (2000)ADSCrossRefGoogle Scholar
  25. 25.
    L.M. Duan, G. Giedke, J.I. Cirac, P. Zoller, Phys. Rev. Lett. 84, 2722 (2000)ADSCrossRefGoogle Scholar
  26. 26.
    J.T. Hill, A.H. Safavi-Naeini, J. Chan, O. Painter, Nat. Commun. 3, 1196 (2012)ADSCrossRefGoogle Scholar
  27. 27.
    K.Y. Zhang, F. Bariani, Y. Dong, W.P. Zhang, P. Meystre, Phys. Rev. Lett. 114, 113601 (2015)ADSCrossRefGoogle Scholar
  28. 28.
    X.H. Yang, M. Xiao, Sci. Rep. 5, 13609 (2015)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Xuping Shao
    • 1
    • 2
    • 3
  • Zhiyong Yin
    • 1
    • 3
  • Zhenghong Li
    • 1
    • 3
  • Xihua Yang
    • 1
    • 3
    Email author
  1. 1.Department of PhysicsShanghai UniversityShanghaiP.R. China
  2. 2.School of Science, Nantong UniversityNantongP.R. China
  3. 3.Shanghai Key Laboratory of High Temperature Superconductors, Shanghai UniversityShanghaiP.R. China

Personalised recommendations