Advertisement

Stability and interatomic potentials for M-doped TiV alloys (M=H, He, C, O) by first-principles simulations

  • Xinhua Yang
  • Jian Hu
  • Wenkai JiangEmail author
Regular Article
  • 10 Downloads

Abstract

TiV alloy is an important candidate structural material of hydrogen storage and fusion reactor systems. It will be inevitably invaded by impurity atoms such as H, He, C, and O in service. The first-principles simulations were performed to study stability and interatomic potentials for M-doped TiV alloys (M=H, He, C, O). The results showed that He has a positive binding energy, while H, C, and O have negative ones, which means that H, C, and O are doped into TiV alloys more easily than He. For H, He, C, and O atoms, on the other hand, the tetrahedral sites have lower binding energy and smaller lattice distortion than the octahedral interstitial sites, so they can be embedded in the tetrahedral sites more stably. The modified embedded atom method potential was used for characterizing V–Ti interaction and Lennard-Jones potential for V–M and Ti–M interactions. All the potential parameters were determined according to the first-principles simulations.

Graphical abstract

Keywords

Atomic Physics 

References

  1. 1.
    J.G. Du, X.Y. Sun, G. Jiang, Eur. Phys. J. D 55, 111 (2009)ADSCrossRefGoogle Scholar
  2. 2.
    T. Takahashi, Y. Minamino, H. Hirasawa, T. Ouchi, Mater. Trans. 55, 290 (2014)CrossRefGoogle Scholar
  3. 3.
    P.B. Zhang, J.J. Zhao, Y. Qin, B. Wen, Nucl. Instrum. Methods Phys. Res. Sect. B 269, 1735 (2011)ADSCrossRefGoogle Scholar
  4. 4.
    J.M. Chen, S.Y. Qiu, L. Yang, Z.Y. Xu, Y. Deng, Y. Xu, J. Nucl. Mater. 302, 135 (2002)ADSCrossRefGoogle Scholar
  5. 5.
    K. Edalati, H. Shao, H. Emami, H. Iwaoka, E. Akiba, Z. Horita, Int. J. Hydrogen Energy 41, 8917 (2016)CrossRefGoogle Scholar
  6. 6.
    M. Balcerzak, Int. J. Hydrogen Energy 42, 23698 (2017)CrossRefGoogle Scholar
  7. 7.
    J.R. DiStefano, J.H. DeVan, J. Nucl. Mater. 249, 150 (1997)ADSCrossRefGoogle Scholar
  8. 8.
    J. Hua, Y.L. Liu, H.S. Li, M.W. Zhao, X.D. Liu, Int. J. Mod. Phys. B 28, 13 (2014)CrossRefGoogle Scholar
  9. 9.
    J. Hua, Y.L. Liu, H.S. Li, M.W. Zhao, X.D. Liu, Comput. Condens. Matter 3, 1 (2015)CrossRefGoogle Scholar
  10. 10.
    J. Hua, Y.L. Liu, H.S. Li, M.W. Zhao, X.D. Liu, Chin. Phys. B 25, 8 (2016)Google Scholar
  11. 11.
    P.B. Zhang, J.J. Zhao, Y. Qin, B. Wen, J. Nucl. Mater. 413, 90 (2011)ADSCrossRefGoogle Scholar
  12. 12.
    C.X. Li, H.B. Luo, Q.M. Hu, R. Yang, F.X. Yin, O. Umezawa, L. Vitos, Solid State Commun. 159, 70 (2013)ADSCrossRefGoogle Scholar
  13. 13.
    P.B. Zhang, J.J. Zhao, B. Wen, J. Phys. Condens. Matter 24, 11 (2012)Google Scholar
  14. 14.
    V.M. Chernov, V.A. Romanov, A.O. Krutskikh, J. Nucl. Mater. 271, 274 (1999)ADSCrossRefGoogle Scholar
  15. 15.
    X.Q. Li, J.J. Zhao, Comput. Mater. Sci. 53, 101 (2012)CrossRefGoogle Scholar
  16. 16.
    J.P. Perdew, K. Burke, Y. Wang, Phys. Rev. B 54, 16533 (1996)ADSCrossRefGoogle Scholar
  17. 17.
    P. Hohenberg, W. Kohn, Phys. Rev. B 136, B864 (1964)ADSCrossRefGoogle Scholar
  18. 18.
    W. Kohn, L.J. Sham, Phys. Rev. 140, A1133 (1965)ADSCrossRefGoogle Scholar
  19. 19.
    H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188 (1976)ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    M.S. Daw, M.I. Baskes, Phys. Rev. B 29, 6443 (1984)ADSCrossRefGoogle Scholar
  21. 21.
    M.I. Baskes, Phys. Rev. B 46, 2727 (1992)ADSCrossRefGoogle Scholar
  22. 22.
    B.J. Lee, M.I. Baskes, Phys. Rev. B 62, 8564 (2000)ADSCrossRefGoogle Scholar
  23. 23.
    B.J. Lee, M.I. Baskes, H. Kim, Y.K. Cho, Phys. Rev. B 64, 11 (2001)Google Scholar
  24. 24.
    B.J. Lee, J.H. Shim, M.I. Baskes, Phys. Rev. B 68, 11 (2003)Google Scholar
  25. 25.
    X.B. Duan, B.L. He, M.M. Guo, Z.T. Liu, Y.W. Wen, B. Shan, Comput. Mater. Sci. 150, 418 (2018)CrossRefGoogle Scholar
  26. 26.
    Y.M. Kim, B.J. Lee, M.I. Baskes, Phys. Rev. B 74, 12 (2006)Google Scholar
  27. 27.
    H.K. Kim, W.S. Jung, B.J. Lee, Acta Mater. 57, 3140 (2009)CrossRefGoogle Scholar
  28. 28.
    B.J. Lee, W.S. Ko, H.K. Kim, E.H. Kim, Calphad 34, 510 (2010)CrossRefGoogle Scholar
  29. 29.
    J.S. Kim, D. Seol, J. Ji, H.S. Jang, Y. Kim, B.J. Lee, Calphad 59, 131 (2017)CrossRefGoogle Scholar
  30. 30.
    J.R.M. Cotterill, M. Doyama, in Lattice defects and their interactions, edited by R.R. Hasiguti (Gordon and Breach Science Publishers Inc., New York, NY, 1967), Vol. 1, pp. 62–75Google Scholar
  31. 31.
    P. Selvamani, G. Vaitheeswaran, V. Kanchana, M. Rajagopalan, Physica C 370, 108 (2002)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of MechanicsHuazhong University of Science and TechnologyWuhanP.R. China
  2. 2.Hubei Key Laboratory of Engineering Structural Analysis and Safety AssessmentWuhanP.R. China

Personalised recommendations