Anomalous dynamical evolution and nonadiabatic level crossing in exactly solvable time-dependent quantum systems

  • Hong Cao
  • Shao-Wu Yao
  • Li-Xiang CenEmail author
Regular Article


The anomalous dynamical evolution and the crossing of nonadiabatic energy levels are investigated for exactly solvable time-dependent quantum systems through a reverse-engineering scheme. By exploiting a typical driven model, we elucidate the peculiarities of its dynamics with anomalous behavior: the evolution of the adiabatic states and of the nonadiabatic ones exhibits opposite behavior from their representative vectors evolving from a parallel state to an antiparallel state; the nonadiabatic level crossing is identified as a necessary consequence since the crossing point corresponds exactly to the perpendicular point of the two vectors in the parametric space. In the light of these results, we show that various driven models with anomalous dynamical evolution can be designed and they offer alternative protocols for the quantum state control.

Graphical abstract


Quantum Information 


  1. 1.
    L.D. Landau, Phys. Z. Sowjetunion 2, 46 (1932)Google Scholar
  2. 2.
    C. Zener, Proc. R. Soc. A 137, 696 (1932)ADSCrossRefGoogle Scholar
  3. 3.
    C.F. Bharucha, K.W. Madison, P.R. Morrow, S.R. Wilkinson, B. Sundaram, M.G. Raizen, Phys. Rev. A 55, R857 (1997)ADSCrossRefGoogle Scholar
  4. 4.
    K. Saito, M. Wubs, S. Kohler, P. Hänggi, Y. Kayanuma, Europhys. Lett. 76, 22 (2006)ADSCrossRefGoogle Scholar
  5. 5.
    A. Zenesini, H. Lignier, G. Tayebirad, J. Radogostowicz, D. Ciampini, R. Mannella, S. Wimberger, O. Morsch, E. Arimondo, Phys. Rev. Lett. 103, 090403 (2009)ADSCrossRefGoogle Scholar
  6. 6.
    R. Khomeriki, Phys. Rev. A 82, 013839 (2010)ADSCrossRefGoogle Scholar
  7. 7.
    N. Malossi, M.G. Bason, M. Viteau, E. Arimondo, R. Mannella, O. Morsch, D. Ciampini, Phys. Rev. A 87, 012116 (2013)ADSCrossRefGoogle Scholar
  8. 8.
    A.M. Kuztetsov, Charge Transfer in Physics, Chemistry, and Biology (Gordon and Breach, Reading, 1995)Google Scholar
  9. 9.
    C. Zhu, S.H. Lin, J. Chem. Phys. 107, 2859 (1997)ADSCrossRefGoogle Scholar
  10. 10.
    A. Nitzan, Chemical Dynamics in Condensed Phases (Oxford University Press, Oxford, 2006)Google Scholar
  11. 11.
    H. Nakamura, Nonadiabatic transitions: Concepts, Basic Theories and Applications (World Scientific, 2012)Google Scholar
  12. 12.
    L.F. Wei, J.R. Johansson, L.X. Cen, S. Ashhab, F. Nori, Phys. Rev. Lett. 100, 113601 (2008)ADSCrossRefGoogle Scholar
  13. 13.
    J.Q. You, F. Nori, Nature 474, 589 (2011)ADSCrossRefGoogle Scholar
  14. 14.
    G. Cao, H.O. Li, T. Tu, L. Wang, C. Zhou, M. Xiao, G.C. Guo, H.W. Jiang, G.P. Guo, Nat. Commun. 4, 1401 (2012)ADSCrossRefGoogle Scholar
  15. 15.
    C.M. Quintana, K.D. Petersson, L.W. McFaul, S.J. Srinivasan, A.A. Houck, J.R. Petta, Phys. Rev. Lett. 110, 173603 (2013)ADSCrossRefGoogle Scholar
  16. 16.
    M.B. Kenmoe, L.C. Fai, Phys. Rev. B 94, 125101 (2016)ADSCrossRefGoogle Scholar
  17. 17.
    G. Yang, W. Li, L.X. Cen, Chin. Phys. Lett. 35, 013201 (2018)ADSCrossRefGoogle Scholar
  18. 18.
    W. Li, L.X. Cen, Ann. Phys. 389, 1 (2018)ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    J.R. Rubbmark, M.M. Kash, M.G. Littman, D. Kleppner, Phys. Rev. A 23, 3107 (1981)ADSCrossRefGoogle Scholar
  20. 20.
    G. Sun, X. Wen, Y. Wang, S. Cong, J. Chen, L. Kang, W. Xu, Y. Yu, S. Han, P. Wu, Appl. Phys. Lett. 94, 102502 (2009)ADSCrossRefGoogle Scholar
  21. 21.
    T. Wang, Z. Zhang, L. Xiang, Z. Jia, P. Duan, W. Cai, Z. Gong, Z. Zong, M. Wu, J. Wu, New J. Phy. 20, 065003 (2018)ADSCrossRefGoogle Scholar
  22. 22.
    J. Zhang, J.H. Shim, I. Niemeyer, T. Taniguchi, T. Teraji, H. Abe, S. Onoda, T. Yamamoto, T. Ohshima, J. Isoya, D. Suter, Phys. Rev. Lett. 110, 240501 (2013)ADSCrossRefGoogle Scholar
  23. 23.
    B.D. Militello, N.V. Vitanov, Phys. Rev. A 91, 053402 (2015)ADSCrossRefGoogle Scholar
  24. 24.
    H.R. Lewis, Phys. Rev. Lett. 18, 510 (1967)ADSCrossRefGoogle Scholar
  25. 25.
    H.R. Lewis, W.B. Riesenfeld, J. Math. Phys. 10, 1458 (1969)ADSCrossRefGoogle Scholar
  26. 26.
    C.D. Meyer, Matrix Analysis and Applied Linear Algebra (SIAM, 2000)Google Scholar
  27. 27.
    M.V. Berry, J. Phys. A 42, 365303 (2009)MathSciNetCrossRefGoogle Scholar
  28. 28.
    X. Chen, E. Torrontegui, J.G. Muga, Phys. Rev. A 83, 062116 (2011)ADSCrossRefGoogle Scholar
  29. 29.
    M. Demirplak, S.A. Rice, J. Phys. Chem. A 107, 9937 (2003)CrossRefGoogle Scholar
  30. 30.
    X. Chen, T. Lizuain, A. Ruschhaupt, D. Guéry-Odelin, J.G. Muga, Phys. Rev. Lett. 105, 123003 (2010)ADSCrossRefGoogle Scholar
  31. 31.
    F. Petiziol, B. Dive, F. Mintert, S. Wimberger, Phys. Rev. A 98, 043436 (2018)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Center of Theoretical Physics, College of Physics, Sichuan UniversityChengduP.R. China
  2. 2.School of Material Science and Engineering, Chongqing Jiaotong UniversityChongqingP.R. China

Personalised recommendations