Obliquely propagating electron-acoustic solitary waves in magnetized plasmas: the role of trapped superthermal electrons

  • Sharmin Sultana
  • Abdul MannanEmail author
  • Reinhard Schlickeiser
Regular Article


The properties of obliquely propagating electron-acoustic solitary waves (OPEASWs) have been investigated in a magnetized superthermal plasma (containing inertial cold electron species, inertialess electrons following Vasyliunas-Schamel distribution function, and static ions) via the fluid dynamical approach. The reductive perturbation technique is employed to derive the Schamel equation and the solitary wave solution of the Schamel equation is used to examine the basic features of small but finite amplitude OPEASWs in such a magnetized plasma in the presence of trapped k-superthermal hot electron population. The basic features (width, amplitude, speed, etc.) of OPEASWs are found to be significantly modified by the different plasma configuration parameters, such as plasma superthermality, obliqueness, the particle trapping effect, and external magnetic field effect. The nature of electrostatic disturbances, that may propagate in different realistic space and laboratory plasma systems (e.g., in Saturn ring), is briefly discussed.

Graphical abstract


Plasma Physics 


  1. 1.
    K. Watanabe, T. Taniuti, J. Phys. Soc. Jpn. 43, 1819 (1977).ADSCrossRefGoogle Scholar
  2. 2.
    M.Y. Yu, P.K. Shukla, J. Plasma Phys. 29, 409 (1983).ADSCrossRefGoogle Scholar
  3. 3.
    R.L. Tokar, S.P. Gary, Geophys. Res. Lett. 11, 1180 (1984).ADSCrossRefGoogle Scholar
  4. 4.
    S.P. Gary, R.L. Tokar, Phys. Fluids 28, 2439 (1985).ADSCrossRefGoogle Scholar
  5. 5.
    R.L. Mace, M.A. Hellberg, J. Plasma Phys. 43, 239 (1990).ADSCrossRefGoogle Scholar
  6. 6.
    I. Kourakis, P.K. Shukla, Phys. Rev. E 69, 036411 (2004).ADSCrossRefGoogle Scholar
  7. 7.
    A.A. Mamun, P.K. Shukla, L. Stenflo, Phys. Plasmas 9, 1474 (2002).ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    R.L. Mace, G. Amery, M.A. Hellberg, Phys. Plasmas 6, 44 (1999).ADSCrossRefGoogle Scholar
  9. 9.
    T.K. Baluku, M.A. Hellberg, R.L. Mace, J. Geophys. Res. 116, A04227 (2010).ADSGoogle Scholar
  10. 10.
    S. Sultana, I. Kourakis, Plasma Phys. Controlled Fusion 53, 045003 (2011).ADSCrossRefGoogle Scholar
  11. 11.
    S. Sultana, I. Kourakis, Eur. Phys. J. D 66, 1 (2012).ADSCrossRefGoogle Scholar
  12. 12.
    S. Sultana, I. Kourakis, M.A. Hellberg, Plasma Phys. Controlled Fusion 54, 105016 (2012).ADSCrossRefGoogle Scholar
  13. 13.
    D.S. Montgomery, R.J. Focia, H.A. Rose, D.A. Russell, J.A. Cobble, J.C. Fernández, R.P. Johnson, Phys. Rev. Lett. 87, 155001 (2001).ADSCrossRefGoogle Scholar
  14. 14.
    Q. Lu, S. Wang, X. Dou, Phys. Plasmas 12, 072903 (2005).ADSCrossRefGoogle Scholar
  15. 15.
    M.E. Dieckmann, A. Bret, P.K. Shukla, Plasma Phys. Controlled Fusion 49, 1989 (2007).ADSCrossRefGoogle Scholar
  16. 16.
    S. Ali Shan, Astrophys. Space Sci. 364, 1 (2019).MathSciNetCrossRefGoogle Scholar
  17. 17.
    H. Rothkaehl, J.-G. Trotignon, P.M.E. Décréau, J. Blecki, Frédéric Pitout, H. Reme, Adv. Space Res. 43 (2009) 948.ADSCrossRefGoogle Scholar
  18. 18.
    A. Danehkar, N.S. Saini, M.A. Hellberg, I. Kourakis, Phys. Plasmas 18, 072902 (2011).ADSCrossRefGoogle Scholar
  19. 19.
    S.V. Singh, G.S. Lakhina, Nonlinear Processes Geophys. 11, 275 (2004).ADSCrossRefGoogle Scholar
  20. 20.
    H. Matsumoto, H. Kojima, T. Miyatake, Y. Omura, M. Okada, I. Nagano, M. Tsutsui, Geophys. Res. Lett. 21, 2915 (1994).ADSCrossRefGoogle Scholar
  21. 21.
    R.E. Ergun, C.W. Carlson, J.P. McFadden, E.S. Mozer, G.T. Delory, W. Peria, C.C. Chaston, M. Temerin, I. Roth, L. Muschietti, R. Elphic, R. Strangeway, R. Pfaff, C.A. Cattell, D. Klumpar, E. Shelley, W. Peterson, E. Moebius, L. Kistler, Geophys. Res. Lett. 25, 2041 (1998).ADSCrossRefGoogle Scholar
  22. 22.
    J.S. Pickett, D.A. Gurnett, J.D. Menietti, M.J. LeDocq, J.D. Scudder, L.A. Frank, J.B. Sigwarth, K.L. Ackerson, D.D. Morgan, J.R. Franz, P.M. Kintner, B.T. Tsurutani, C.M. Ho, J. Chen, T.A. Fritz, C.T. Russell, W.K. Peterson, Y. Kasahara, I. Kimura, S. Watanabe, G.G. Arkos, G. Rostoker, S. Kokubun, H. Fukunishi, R.F. Pfaff, F.S. Mozer, S.-Y. Hsieh, T. Mukai, M.O. Chandler, Adv. Space Res. 24, 23 (1999).ADSCrossRefGoogle Scholar
  23. 23.
    S. Sultana, I. Kourakis, Phys. Plasmas 22, 102302 (2015).ADSCrossRefGoogle Scholar
  24. 24.
    S. Sultana, R. Schlickeiser, I.S. Elkamash, I. Kourakis, Phys. Rev. E 98, 033207 (2018).ADSCrossRefGoogle Scholar
  25. 25.
    R.E. Ergun, L. Andersson, D.S. Main, Y.J. Su, C.W. Carlson, J.P. McFadden, F.S. Mozer, Phys. Plasmas 9, 3685 (2002).ADSCrossRefGoogle Scholar
  26. 26.
    L. Andersson, R.E. Ergun, D.L. Newman, J.P. McFadden, C.W. Carlson, Y.J. Su, Phys. Plasmas 9, 3600 (2002).ADSCrossRefGoogle Scholar
  27. 27.
    C. Cattell, C. Neiman, J. Dombeck, J. Crumley, J. Wygant, C.A. Kletzing, W.K. Peterson, F.S. Mozer, M. Andre, Nonlinear Processes Geophys. 10, 13 (2003).ADSCrossRefGoogle Scholar
  28. 28.
    P. Schippers, M. Blanc, N. Andre, I. Dandouras, G.R. Lewis, L.K. Gilbert, A.M. Persoon, N. Krupp, D.A. Gurnett, A.J. Coates, S.M. Krimigis, D.T. Young, M.K. Dougherty, J. Geophys. Res. 113, A07208 (2008).ADSCrossRefGoogle Scholar
  29. 29.
    J.P. Lynov, P. Michelsen, H.L. Pecseli, J.J. Rasmussen, K. Saeki, V.A. Turikov, Phys. Scr. 20, 328 (1979).ADSCrossRefGoogle Scholar
  30. 30.
    M.V. Goldman, D.L. Newman, R.E. Ergun, Nonlinear Processes Geophys. 10, 37 (2003).ADSCrossRefGoogle Scholar
  31. 31.
    H. Schamel, Plasma Phys. 14, 905 (1972).ADSCrossRefGoogle Scholar
  32. 32.
    H. Schamel, J. Plasma Phys. 9, 377 (1973).ADSCrossRefGoogle Scholar
  33. 33.
    F. Verheest, W. Hereman, Phys. Scr. 50, 611 (1994).ADSCrossRefGoogle Scholar
  34. 34.
    G. Williams, F. Verheest, M.A. Hellberg, A.G.M. Anowar, I. Kourakis, Phys. Plasmas 21, 092103 (2014).ADSCrossRefGoogle Scholar
  35. 35.
    A.A. Mamun, R.A. Cairns, P.K. Shukla, Phys. Plasmas 3, 2610 (1996).ADSCrossRefGoogle Scholar
  36. 36.
    Y.-N. Nejoh, Phys. Plasmas 4, 2813 (1997).ADSCrossRefGoogle Scholar
  37. 37.
    A.A. Mamun, Phys. Plasmas 5, 322 (1998).ADSCrossRefGoogle Scholar
  38. 38.
    A.A. Mamun, P.K. Shukla, J. Geophys. Res. 107, 1135 (2002).CrossRefGoogle Scholar
  39. 39.
    A.A. Mamun, P.K. Shukla, L. Stenflo, Phys. Plasmas 9, 1474 (2002).ADSMathSciNetCrossRefGoogle Scholar
  40. 40.
    M. Tribeche, L. Djebarni, H. Schamel, Phys. Lett. A 376, 3164 (2012).ADSCrossRefGoogle Scholar
  41. 41.
    M.G. Hafez, N.C. Roy, M.R. Talukder, M. Hossain Ali, Phys. Plasmas 23, 082904 (2016).ADSCrossRefGoogle Scholar
  42. 42.
    S. Sultana, S. Islam, A.A. Mamun, R. Schlickeiser, Phys. Plasmas 26, 012107 (2019).ADSCrossRefGoogle Scholar
  43. 43.
    M.A. Hellberg, R.L. Mace, T.K. Baluku, I. Kourakis, N.S. Saini, Phys. Plasmas 16, 094701 (2009).ADSCrossRefGoogle Scholar
  44. 44.
    G. Sarri, M.E. Dieckmann, C.R.D. Brown, C.A. Cecchetti, D.J. Hoarty, S.F. James, R. Jung, I. Kourakis, H. Schamel, O. Willi, M. Borghesi, Phys. Plasmas 17, 010701 (2010).ADSCrossRefGoogle Scholar
  45. 45.
    M. Ferdousi, S. Sultana, A.A. Mamun, Phys. Plasmas 22, 032117 (2015).ADSCrossRefGoogle Scholar
  46. 46.
    S. Sultana, I. Kourakis, M.A. Hellberg, Phys. Plasmas 17, 032310 (2010).ADSCrossRefGoogle Scholar
  47. 47.
    W. Malfliet, W. Hereman, Phys. Scr. 54, 563 (1996).ADSCrossRefGoogle Scholar
  48. 48.
    F. Verheest, J. Phys. A: Math. Theor. 42, 285501 (2009).MathSciNetCrossRefGoogle Scholar

Copyright information

© EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Sharmin Sultana
    • 1
    • 2
  • Abdul Mannan
    • 1
    • 3
    Email author
  • Reinhard Schlickeiser
    • 2
  1. 1.Department of PhysicsJahangirnagar UniversitySavar, DhakaBangladesh
  2. 2.Fakultät für Physik und Astronomie, Ruhr-Universität BochumBochumGermany
  3. 3.Institut für Mathematik, Martin Luther Universität Halle-WittenbergHalle(Saale)Germany

Personalised recommendations