Advertisement

Theoretical investigation on the EPR parameters for VO2+ doped ZnO–CdS nanocomposites

  • Quan-Shui Zhu
  • Ya-Dong Li
  • Bao-Jin Chen
  • Hua-Ming ZhangEmail author
Regular Article
  • 4 Downloads

Abstract

The three optical absorption bands and electron paramagnetic resonance (EPR) parameters g factors (g||, g) and the hyperfine structure constants (A||, A) for VO2+ doped in the ZnO–CdS nanocomposites are theoretically investigated by using the perturbation formulas of these EPR parameters for a 3d1 ion under tetragonally compressed octahedral based on the cluster approach. In the calculation formulas, the relationships between local structure of the VO2+ dopants and the EPR parameters are established from the crystal-field parameters via the tetragonal distortion (characterized by relative tetragonal compression ratio τ), and the contributions to EPR parameters arising from the ligand orbital and spin-orbit coupling interactions via covalence effect are considered. Based on the studies, the V4+ dopants are found to show a relative compression ratio τ (≈ 2.1%) along the z-axis due to Jahn–Teller effect. Calculated results show reasonable agreement with the experimental data. Reasonableness of the proposed model is discussed.

Graphical abstract

Keywords

Molecular Physics and Chemical Physics 

References

  1. 1.
    M.A.M. Adnan, N.M. Julkapli, S.B.A. Hamid, Rev. Inorg. Chem. 36, 77 (2016)Google Scholar
  2. 2.
    Y.K. Mishra, R. Adelung, Mater. Today 21, 631 (2018)CrossRefGoogle Scholar
  3. 3.
    M. El-Hilo, A.A. Dakhel, J. Magn. Magn. Mater. 323, 2202 (2011)ADSCrossRefGoogle Scholar
  4. 4.
    S. Kumar, P. Vats, S. Gautam, V.P. Gupta, K.D. Verma, K.H. Chae, M. Hashim, H.K. Choi, Mater. Res. Bull. 59, 377 (2014)CrossRefGoogle Scholar
  5. 5.
    S.J. Pearton, C.R. Abernathy, M.E. Overberg, G.T. Thaler, D.P. Norton, N. Theodoropoulou, A.F. Hebard, Y.D. Park, F. Ren, J. Kim, L.A. Boatner, J. Appl. Phys. 93, 1 (2003)ADSCrossRefGoogle Scholar
  6. 6.
    J. Schrier, D.O. Demchenko, A.P. Alivisatos, Nano. Lett. 7, 2377 (2007)ADSCrossRefGoogle Scholar
  7. 7.
    Y. Bu, Z. Chen, W. Li, J. Yu, A.C.S. Appl, Mater. Inter. 5, 5097 (2013)CrossRefGoogle Scholar
  8. 8.
    J. Liu, K. Zhu, B. Sheng, Z. Li, G. Tai, J. Qiu, J. Wang, J. Chen, Y. You, Q. Gu, P. Liu, J. Alloys Compd. 618, 67 (2015)CrossRefGoogle Scholar
  9. 9.
    G. Murugadoss, Particuology 10, 722 (2012)CrossRefGoogle Scholar
  10. 10.
    G. Thirumal Rao, R. JoyceStella, B. Babu, K. Ravindranadh, C.V. Reddy, J. Shim, R.V.S.S.N. Ravikumar, Mater. Sci. Eng. B 201, 72 (2015)CrossRefGoogle Scholar
  11. 11.
    L. Irimpan, V.P.N. Nampoori, P. Radhakrishnan, J. Appl. Phys. 103, 094914 (2008)ADSCrossRefGoogle Scholar
  12. 12.
    C. Han, F. Wang, C. Gao, P. Liu, Y. Ding, S. Zhang, M. Yang, J. Mater. Chem. C 3, 5065 (2015)CrossRefGoogle Scholar
  13. 13.
    H. Li, C. Yao, L. Meng, H. Sun, J. Huang, Q. Gong, Electrochem. Acta 108, 45 (2013)ADSCrossRefGoogle Scholar
  14. 14.
    H. Zhao, Y. Dong, P. Jiang, G. Wang, H. Miao, R. Wu, L. Kong, J. Zhang, C. Zhang, A.C.S. Sustain, Chem. 3, 969 (2015)Google Scholar
  15. 15.
    G.T. Rao, B. Babu, R.J. Stella, V.P. Manjari, R.V.S.S.N. Ravikumar, Spectrochim. Acta A 139, 86 (2015)ADSCrossRefGoogle Scholar
  16. 16.
    G.T. Rao, B. Babu, R.J. Stella, V.P. Manjari, ChV Reddy, J. Shim, R.V.S.S.N. Ravikumar, J. Mol. Struct. 1081, 254 (2015)ADSCrossRefGoogle Scholar
  17. 17.
    V. Sreenivasulu, G. Upender, V.C. Mouli, M. Prasad, Spectrochim. Acta A 148, 215 (2015)ADSCrossRefGoogle Scholar
  18. 18.
    M. Fujimoto, T.J. Yu, K. Furukawa, J. Phys. Chem. Solids 39, 345 (1978)ADSCrossRefGoogle Scholar
  19. 19.
    N.S. Reddy, R. Viswanatha, R.P.S. Chakradhar, C.N. Reddy, J. Alloys Compd. 695, 1368 (2017)CrossRefGoogle Scholar
  20. 20.
    S.K. Misra, J. Sun, Physica B 162, 331 (1990)ADSCrossRefGoogle Scholar
  21. 21.
    C.C. Ding, S.Y. Wu, L.J. Zhang, Y.Q. Xu, Z.H. Zhang, M.H. Wu, B.H. Teng, Magn Reson Chem. 56, 25 (2018)CrossRefGoogle Scholar
  22. 22.
    B. Srinivas, A. Hameed, G. Ramadevudu, M.N. Chary, Md Shareefuddin, J. Phys. Chem. Solids 129, 22 (2019)ADSCrossRefGoogle Scholar
  23. 23.
    B. Srinivas, A. Hameed, R.V. Kumar, M.N. Chary, Md Shareefuddin, Philos. Mag. 98, 1625 (2018)ADSCrossRefGoogle Scholar
  24. 24.
    C.C. Ding, S.Y. Wu, L.N. Wu, L.J. Zhang, L. Peng, M.H. Wu, B.H. Teng, J. Phys. Chem. Solids 113, 102 (2018)ADSCrossRefGoogle Scholar
  25. 25.
    B.J. Wang, M. Jiang, Phys. B 406, 1894 (2011)ADSCrossRefGoogle Scholar
  26. 26.
    S.Y. Wu, H.M. Zhang, P. Xu, S.X. Zhang, Spectrochim. Acta A 75, 230 (2010)ADSCrossRefGoogle Scholar
  27. 27.
    Y.X. Hu, S.Y. Wu, X.F. Wang, Philosoph. Mag. 90, 1391 (2010)ADSCrossRefGoogle Scholar
  28. 28.
    B.T. Song, S.Y. Wu, Z.H. Zhang, L.L. Li, Z. Naturforsch. A 68, 337 (2013)ADSCrossRefGoogle Scholar
  29. 29.
    J.S. Griffith, The Theory of Transition-Metal Ions (Cambridge University Press, London, 1964)Google Scholar
  30. 30.
    B.R. McGarvey, J. Phys. Chem. 71, 51 (1967)CrossRefGoogle Scholar
  31. 31.
    M.L. Du, C. Rudowicz, Phys. Rev. B 46, 8974 (1992)ADSCrossRefGoogle Scholar
  32. 32.
    D.J. Newman, B. Ng, Rep. Prog. Phys. 52, 699 (1989)ADSCrossRefGoogle Scholar
  33. 33.
    H.M. Zhang, S.Y. Wu, M.Q. Kuang, Z.H. Zhang, J. Phys. Chem. Solids 73, 846 (2012)ADSCrossRefGoogle Scholar
  34. 34.
    C.C. Ding, S.Y. Wu, X.F. Hu, G.L. Li, Y.Q. Xu, J. Alloys Compd. 664, 250 (2016)CrossRefGoogle Scholar
  35. 35.
    W.C. Zheng, D.T. Zhang, L. He, P. Su, Phys. Scr. 84, 025702 (2011)ADSCrossRefGoogle Scholar
  36. 36.
    P.S. Halasyamani, D.O. Hare, Inorg. Chem. 36, 6409 (1997)CrossRefGoogle Scholar
  37. 37.
    S. Banerjee, I. Pant, I. Khan, P. Prasad, A. Hussain, P. Kondaiah, A.R. Chakravarty, Dalton Trans. 44, 4108 (2015)CrossRefGoogle Scholar
  38. 38.
    L. Kȩpińsk, J. Okal, J. Catal. 192, 48 (2000)CrossRefGoogle Scholar
  39. 39.
    R.C. Weast, CRC Handbook of Chemistry and Physics (CRC Press, Boca Raton, 1989)Google Scholar
  40. 40.
    E. Clementi, D.L. Raimondi, J. Chem. Phys. 38, 2686 (1963)ADSCrossRefGoogle Scholar
  41. 41.
    E. Clementi, D.L. Raimondi, W.P. Reinhardt, J. Chem. Phys. 47, 1300 (1967)ADSCrossRefGoogle Scholar
  42. 42.
    A. Abragam, B. Bleaney, Electron Paramagnetic Resonance of Transition Ions (Oxford University Press, London, 1970)Google Scholar
  43. 43.
    A. Hameed, G. Ramadevudu, S.L. Rao, M. Shareefuddin, M.N. Chary, New J. Glass Ceram. 2, 51 (2012)CrossRefGoogle Scholar
  44. 44.
    R.H. Borchers, C. Kikuchi, J. Chem. Phys. 40, 2270 (1964)ADSCrossRefGoogle Scholar
  45. 45.
    K.H. Karlsson, T. Perander, Chem. Script. 3, 201 (1973)Google Scholar
  46. 46.
    H.M. Zhang, W.B. Xiao, X. Wan, Phys. B 449, 225 (2014)ADSCrossRefGoogle Scholar
  47. 47.
    M.N. Li, Z.H. Zhang, S.Y. Wu, Z. Naturforsch. 72a, 1139 (2017)ADSCrossRefGoogle Scholar
  48. 48.
    C.C. Ding, S.Y. Wu, L. Peng, L.N. Wu, Z.H. Zhang, Q.S. Zhu, M.H. Wu, B.H. Teng, J. Non-Cryst, Solids 481, 103 (2018)Google Scholar
  49. 49.
    K.S.N. Murthy, P. Narayana Murthy, Ch Rama Krishna, P.S. Rao, R.V.S.S.N. Ravikumar, Phys. Chem. Glasses B 51, 281 (2010)Google Scholar
  50. 50.
    S. Mukherjee, A. Pal, A. Kumar, J. Phys. Condens. Matter. 20, 255202 (2008)CrossRefGoogle Scholar
  51. 51.
    R.V.S.S.N. Ravikumar, A.V. Chandrasekhar, Y.P. Reddy, R. Komatsu, K. Ikeda, J. Yamauchi, P.S. Rao, , Mater. Chem. Phys. 103, 5 (2007)CrossRefGoogle Scholar
  52. 52.
    R. Poonguzhali, R. Venkatesan, T.M. Rajendiran, P.S. Rao, R.V.S.S.N. Ravikumar, Y.P. Reddy, Cryst. Res. Technol. 35, 1203 (2000)CrossRefGoogle Scholar
  53. 53.
    R.V.S.S.N. Ravikumar, N. Madhu, B.J. Reddy, Y.P. Reddy, Phys. Scr. 55, 637 (1997)ADSCrossRefGoogle Scholar
  54. 54.
    K. Satyavathi, M.S. Rao, Y. Nagabhaskararao, S. Cole, J. Mater, Sci. Mater. Electron. 28, 12226 (2017)CrossRefGoogle Scholar
  55. 55.
    S.Y. Wu, L.H. Wei, Z.H. Zhang, X.F. Wang, J.Z. Lin, Z. Naturforsch, a 63, 523 (2008)Google Scholar
  56. 56.
    W.L. Feng, Philos. Mag. 89, 1391 (2009)ADSCrossRefGoogle Scholar
  57. 57.
    C.Y. Li, G.X. Wang, X.M. Zheng, Condens. Matter Phys. 18, 23701 (2015)CrossRefGoogle Scholar
  58. 58.
    A. Grzechnik, T.Z. Ren, J.M. Posse, K. Friese, Dalton Trans. 40, 4572 (2011)CrossRefGoogle Scholar
  59. 59.
    H.M. Zhang, C. Yan, Q.S. Zhu, Magn Reson Chem. 57, 144 (2019)CrossRefGoogle Scholar

Copyright information

© EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2020

Authors and Affiliations

  • Quan-Shui Zhu
    • 1
  • Ya-Dong Li
    • 1
  • Bao-Jin Chen
    • 1
  • Hua-Ming Zhang
    • 1
    • 2
    Email author
  1. 1.Jiangxi Engineering Laboratory for Optoelectronics Testing Technology, Nanchang Hangkong UniversityNanchangP.R. China
  2. 2.Key Laboratory of Nondestructive Testing, Ministry of Education, Nanchang Hangkong UniversityNanchangP.R. China

Personalised recommendations