Advertisement

Optical spectrum of monolayer and coaxial quantum wires: Impact of spin-orbit interaction

  • Dorna Najafi
  • Behrooz VaseghiEmail author
  • Kavoos Abbasi
  • Seyed F. Taghizadeh
  • Ghasem Rezaei
Regular Article
  • 38 Downloads

Abstract

Simultaneous effects of spin-orbit interaction, external electric and magnetic fields and quantum confinement on the optical absorption coefficient and refractive index of a mono-layer and coaxial quantum wires are investigated in this paper. Finite element method and numerical calculations are established to find energy eigenvalues, energy eigenfunctions and transition dipole moments to obtain desired optical parameters. Results show that spin-orbit interaction exhibits different effects at various field strengths and dimensions. Due to the anti-crossing of energy states and tunneling effect new results are observed in comparison with usual nanostructures.

Graphical abstract

Keywords

Clusters and Nanostructures 

Notes

Author contribution statement

All authors contributed to the theoretical analysis, calculations and preparation of the manuscript.

References

  1. 1.
    X.-H. Qi, X.-J. Kong, J.-J. Liu, Phys. Rev. B 58, 10578 (1998).ADSCrossRefGoogle Scholar
  2. 2.
    T. Kaneko, M. Koshino, T. Ando, Phys. Rev. B 78, 245303 (2008).ADSCrossRefGoogle Scholar
  3. 3.
    T. Puangmali, M. Califano, P. Harrison, Phys. Rev. B 78, 245104 (2008).ADSCrossRefGoogle Scholar
  4. 4.
    B. Wu, A. Heidelberg, J.J. Boland, Nat. Mater. 4, 525 (2005).ADSCrossRefGoogle Scholar
  5. 5.
    J. Hu, T.W. Odom, C.M. Leiber, ACS 32, 435 (1999).Google Scholar
  6. 6.
    J.-S. Lee, S.-K. Sim, B. Min, K. Cho, S.W. Kim, S. Kim, J. Cryst. Growth 267, 145 (2004).ADSCrossRefGoogle Scholar
  7. 7.
    J.I. Martinez, F. Calle-Vallejo, E. Abadc, J.A. Alonsod, RSC Adv. 4, 34696 (2014).CrossRefGoogle Scholar
  8. 8.
    P.J. Pauzauskie, P. Yang, Mater. Today 9, 36 (2006).CrossRefGoogle Scholar
  9. 9.
    M. Meyyappan, M.K. Sunkara, Inorganic nanowires, applications, properties and characterization (CRC Press, USA, 2010).CrossRefGoogle Scholar
  10. 10.
    P. Harison, Quantum Wells, Wires and Dots (John Wiley and Sons, England, 2006).Google Scholar
  11. 11.
    S. Nadj-Perge, S.M. Frolov, E.P.A.M. Bakkers, L.P. Kouwenhoven, Nature 468, 1084 (2010).ADSCrossRefGoogle Scholar
  12. 12.
    S.J. Pearton, D.P. Norton, Y.W. Heo, L.C. Tien, M.P. Ivill, Y. Li, B.S. Kang, F. Ren, J. Kelly, A.F. Hebard, J. Electron. Mater. 35, 862 (2006).ADSCrossRefGoogle Scholar
  13. 13.
    K. Hashimoto, N. Iizuka, T. Kimura, Phys. Rev. D. 91, 086003 (2015).ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    A. Hoffmann, S.D. Bader, Appl. Phys. Rev. 4, 047001 (2015).CrossRefGoogle Scholar
  15. 15.
    G.H. Ding, B. Dong, Phys. Rev. B 76, 125301 (2007).ADSCrossRefGoogle Scholar
  16. 16.
    Q.F. Sun, X.C. Xie, J. Wang, Phys. Rev. Lett. 98, 196801 (2007).ADSCrossRefGoogle Scholar
  17. 17.
    G.Y. Huang, S.D. Liang, EPL 86, 67009 (2009).ADSCrossRefGoogle Scholar
  18. 18.
    H. Tetlow, M. Gradhand, Phys. Rev. B 87, 075206 (2013).ADSCrossRefGoogle Scholar
  19. 19.
    W. Wang, M. Dvornik, M.A. Bisotti, D. Chernyshenko, M. Beg, M. Albert, A. Vansteenkiste, B.V. Waeyenberge, A.N. Kuchko, V.V. Kruglyak, H. Fangohr, Phys. Rev. B 92, 054430 (2015).ADSCrossRefGoogle Scholar
  20. 20.
    J. Linder, K. Halterman, Phys. Rev. B 90, 104502 (2014).ADSCrossRefGoogle Scholar
  21. 21.
    S. Debald, B. Kramer, Phys. Rev. B 71, 115322 (2005).ADSCrossRefGoogle Scholar
  22. 22.
    I. Jeong, M. Sung, G.S. Jeong, K. Yoo, J. Woo, Phys. Stat. Sol. A 204, 526 (2007).ADSCrossRefGoogle Scholar
  23. 23.
    C.A. Perroni, D. Berciox, V.M. Ramaglia, V. Carudella, J. Phys. Condens. Matter. 19, 186227 (2007).ADSCrossRefGoogle Scholar
  24. 24.
    G. Wang, Q. Guo, Phys. B 403, 37 (2008).ADSCrossRefGoogle Scholar
  25. 25.
    E.I. Rashba, Phys. Rev. B 79, 161409 (2009).ADSCrossRefGoogle Scholar
  26. 26.
    E.L. Ivchenko, Optical spectroscopy of semiconductor nanostructures (Alpha Science Interaction Ltd., UK, 2005).Google Scholar
  27. 27.
    S. Schmitt-Rink, D.S. Chemela, D.A.B. Miller, Adv. Phys. 38, 89 (1989).ADSCrossRefGoogle Scholar
  28. 28.
    W. Xie, Phys. B 403, 4319 (2008).ADSCrossRefGoogle Scholar
  29. 29.
    E. Rosencher, Ph Bois, Phys. Rev. B 44, 11315 (1991).ADSCrossRefGoogle Scholar
  30. 30.
    G. Rezaei, Z. Mousazadeh, B. Vaseghi, Phys. E 42, 1477 (2010).CrossRefGoogle Scholar
  31. 31.
    G. Wang, K. Guo, Phys. E 28, 14 (2005).CrossRefGoogle Scholar
  32. 32.
    T. Chwiej, Phys. E 94, 139 (2017).CrossRefGoogle Scholar
  33. 33.
    B. Vaseghi, A. Ghaffari, Phys. E 81, 163 (2016).CrossRefGoogle Scholar
  34. 34.
    A. Ghafari, B. Vaseghi, G. Rezaei, S.F. Taghizadeh, M.J. Karimi, Superlattices Microstruct. 101, 397 (2017).ADSCrossRefGoogle Scholar
  35. 35.
    D. Najafi, B. Vaseghia, G. Rezaei, R. Khordad, EPJP 302, 133 (2018).Google Scholar
  36. 36.
    A. Vartanian, A. Kirakosyan, K. Vardanyan, Superlattices Microstruct. 109, 655 (2017).ADSCrossRefGoogle Scholar
  37. 37.
    I.A. Kokurin, Phys. E 74, 264 (2015).CrossRefGoogle Scholar

Copyright information

© EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Dorna Najafi
    • 1
  • Behrooz Vaseghi
    • 1
    Email author
  • Kavoos Abbasi
    • 1
  • Seyed F. Taghizadeh
    • 1
  • Ghasem Rezaei
    • 1
  1. 1.Department of PhysicsCollege of Sciences, Yasouj UniversityYasoujIran

Personalised recommendations