Advertisement

Semiclassical theory of double-pulse spectra for time dependent systems

  • Shahab Ullah KhanEmail author
  • Meng Li Du
Regular Article
  • 31 Downloads

Abstract

A theory of double-pulse photodetachment spectra in the presence of time dependent field has been developed. We derived a general formula for the total population generated by the double-pulse laser applying the time dependent closed orbit theory. We analyzed the double-pulse spectra for H in the presence of constant electric field superposed with a sinusoidal time dependent field. The effects of the amplitude of time dependent field and laser parameters have been investigated. It has been shown that the population has peak or valley when the time delay between the two pulses of the double-pulse laser is equal to the time of the closed orbit emanating at the peak of the first pulse of the double-pulse laser. We also shown that the laser phase parameter modulates the population.

Graphical abstract

Keywords

Nonlinear Dynamics 

Notes

Author contribution statement

Shahab Ullah Khan made the calculations, the numeric and drafted the manuscript. Meng Li Du provided the idea and the guidance as a tutor during the whole work.

References

  1. 1.
    Q.L. Wang, A.F. Starace, Phys. Rev. A 48, R1741 (1993).ADSCrossRefGoogle Scholar
  2. 2.
    P. Hansen, K.A. Mitchell, J.B. Delos, Phys. Rev. E 73, 066226 (2006).ADSCrossRefGoogle Scholar
  3. 3.
    N. Jaison, M.L. Keeler, K.J. Giefer, J.B. Delos, Phys. Rev. E 85, 016205 (2012).ADSCrossRefGoogle Scholar
  4. 4.
    M.L. Du, J.B. Delos, Phys. Rev. A 38, 1896 (1988).ADSCrossRefGoogle Scholar
  5. 5.
    M.L. Du, J.B. Delos, Phys. Rev. A 38, 1913 (1988).ADSCrossRefGoogle Scholar
  6. 6.
    A.D. Peters, J.B. Delos, Phys. Rev. A 47, 3020 (1993).ADSCrossRefGoogle Scholar
  7. 7.
    Z.Y. Liu, D.H. Wang, Phys. Rev. A 55, 815 (1997).ADSCrossRefGoogle Scholar
  8. 8.
    J. Main, G. Wunner, Phys. Rev. A 55, 1743 (1997).ADSCrossRefGoogle Scholar
  9. 9.
    A.D. Peters, C. Jaffé, J.B. Delos, Phys. Rev. A 56, 331 (1997).ADSCrossRefGoogle Scholar
  10. 10.
    H.C. Bryant, A. Mohagheghi, J.E. Stewart, J.B. Donahue, C.R. Quick, R.A. Reeder, V. Yuan, C.R. Hummer, W.W. Smith, S. Cohen, W.P. Reinhardt, L. Overman, Phy. Rev. Lett. 58, 2412 (1987).ADSCrossRefGoogle Scholar
  11. 11.
    M.L. Du, Phys. Rev. A 40, 1330 (1989).ADSCrossRefGoogle Scholar
  12. 12.
    A.R.P. Rau, H.Y. Wong, Phys. Rev. A 37, 632 (1988).ADSCrossRefGoogle Scholar
  13. 13.
    I.I. Fabrikant, Phys. Rev. A 43, 258 (1991).ADSCrossRefGoogle Scholar
  14. 14.
    L.D. Noordam, D.I. Duncan, T.F. Gallagher, Phys. Rev. A 45, 4734 (1992).ADSCrossRefGoogle Scholar
  15. 15.
    B. Broers, J.I. Christian, J.H. Hoogenraad, W.J. van der Zande, H.B. van Linden van den Heuvell, L.D. Noordam, Phys. Rev. Lett. 71, 344 (1993).ADSCrossRefGoogle Scholar
  16. 16.
    M.L. Du, Phys. Rev. A 52, 1143 (1995).ADSCrossRefGoogle Scholar
  17. 17.
    Z. Yongliang, M.L. Du, M. Jian-min, J. Phys. B: At. Mol. Opt. Phys. 32, 1409 (1999).ADSCrossRefGoogle Scholar
  18. 18.
    M.C. Baruch, T.F. Gallagher, D.J. Larson, Phys. Rev. Lett. 65, 01336 (1990).ADSCrossRefGoogle Scholar
  19. 19.
    M.C. Baruch, W.G. Sturrus, N.D. Gibson, D.J. Larson, Phys. Rev. A 45, 02825 (1992).ADSCrossRefGoogle Scholar
  20. 20.
    N. Spellmeyer, D. Kleppner, M.R. Haggerty, V. Kondratovich, J.B. Delos, J. Gao, Phys. Rev. Lett. 79, 1650 (1997).ADSCrossRefGoogle Scholar
  21. 21.
    M.R. Haggerty, J.B. Delos, Phys. Rev. A 61, 053406 (2000).ADSCrossRefGoogle Scholar
  22. 22.
    B.C. Yang, F. Robicheaux, Phys. Rev. A 92, 063410 (2015).ADSCrossRefGoogle Scholar
  23. 23.
    B.C. Yang, F. Robicheaux, Phys. Rev. A 93, 053413 (2016).ADSCrossRefGoogle Scholar
  24. 24.
    D.H. WangQ.F. Xu, J. Du, Eur. Phys. J. D 71, 77 (2017)ADSCrossRefGoogle Scholar
  25. 25.
    D.H. Wang, C.J. Wang, Chin. Phys. B 26 (2017) 103202.ADSCrossRefGoogle Scholar
  26. 26.
    M.L. Du, Commun. Theor. Phys. 39 (2003) 705.ADSCrossRefGoogle Scholar
  27. 27.
    V.P. Maslov, M.V. Fedoriuk, Semi-classical approximation in quantum mechanics (Springer Science, 2001).Google Scholar
  28. 28.
    S.K. Knudson, J.B. Delos, B. Bloom, J. Chem. Phys. 83, 5703 (1985).ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    M.L. Du, Phys. Rev. A 70, 055402 (2004).ADSCrossRefGoogle Scholar
  30. 30.
    B.C. Yang, M.L. Du, J.B. Delos, Phys. Rev. A 70, 013417 (2014).ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Theoretical Physics, Chinese Academy of SciencesBeijingP.R. China
  2. 2.School of Physical Sciences, University of Chinese Academy of SciencesBeijingP.R. China

Personalised recommendations