Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Modelling of inhomogeneous mixing of plasma species in argon–steam arc discharge for broad range of operating conditions

  • 21 Accesses

Abstract

Numerical simulation of mixing of argon- and water-plasma species in argon-steam arc discharge has been investigated in thermal plasma generator with the combined stabilization of arc by axial gas flow (argon) and water vortex. Mixing process is described by the combined diffusion coefficients method in which the coefficients describe the diffusion of argon “gas”, with respect to steam “gas”. Calculations for currents 150–600 A with 15–40 standard liters per minute (slm) of argon reveal inhomogeneous mixing of argon and oxygen-hydrogen species with the argon species prevailing near the arc axis. However, calculations for currents higher than 400 A were not straightforward and a phenomenon of premixing of argon and steam species in the upstream discharge region was predicted from modelling to obtain reasonable agreement with experimental data. Premixed argon-steam plasma has a global impact on the plasma jet parameters near the exit nozzle as well as on the overall arc performance. The results of thermo-fluid fields, species mole fractions and radiation losses from the discharge are presented and discussed. Our former calculations based on the homogeneous mixing assumption differ from the present model in temperature, enthalpy, radiation losses, and flow field. Comparison with available experiments exhibits very good qualitative and quantitative agreements for the radial temperature profiles and satisfactory agreement for the velocity profiles 2 mm downstream of the exit nozzle.

Graphical abstract

This is a preview of subscription content, log in to check access.

References

  1. 1.

    P. Fauchais, A. Vardelle, IEEE Trans. Plasma Sci. 25, 1258 (1997)

  2. 2.

    E. Pfender, Plasma Chem. Plasma Process. 19, 1 (1999)

  3. 3.

    A.B. Murphy, B. Hiraoka, J. Phys. D: Appl. Phys. 33, 2183 (2000)

  4. 4.

    A.B. Murphy, Phys. Rev. E 55, 7473 (1997)

  5. 5.

    J.O. Hirschfelder, C.F. Curtiss, J. Chem. Phys. 17, 1076 (1949)

  6. 6.

    J.D. Ramshaw, J. Non-Equilib, Thermodyn. 15, 295 (1990)

  7. 7.

    R. Taylor, R. Krishna, Multicomponent Mass Transfer (Wiley, New York, 1993)

  8. 8.

    J.D. Ramshaw, C.H. Chang, J. Non-Equilib. Thermodyn. 21, 223 (1996)

  9. 9.

    J.D. Ramshaw, C.H. Chang, Plasma Chem. Plasma Process. 11, 395 (1991)

  10. 10.

    A.B. Murphy, Phys. Rev. E 48, 3594 (1993)

  11. 11.

    A.B. Murphy, J. Phys. D: Appl. Phys. 31, 3383 (1998)

  12. 12.

    A.B. Murphy, Phys. Rev. Lett. 73, 1797 (1994)

  13. 13.

    S. Ghorui, M. Vysohlid, J.V.R. Heberlein, E. Pfender, Phys. Rev. E 76, 016404 (2007)

  14. 14.

    A.M. Fudolig, H. Nogami, J. Yagi, ISIJ Int. 36, 1222 (1996)

  15. 15.

    V. Colombo, C. Deschenaux, E. Ghedini, M. Gherardi, C. Jaeggi, M. Leparoux, V. Mani, P. Sanibondi, Plasma Sources Sci. Technol. 21, 045010 (2012)

  16. 16.

    M. Schnick, U. Fuessel, M. Hertel, M. Haessler, A. Spille-Kohoff, A.B. Murphy, J. Phys. D: Appl. Phys. 43, 434008 (2010)

  17. 17.

    H.-P. Li, X. Chen, Plasma Chem. Plasma Process. 22, 27 (2002)

  18. 18.

    H.X. Wang, X. Chen, H.-P. Li, Plasma Chem. Plasma Process. 31, 373 (2011)

  19. 19.

    F. Yang, M. Rong, Y. Wu, R. Ma, A.B. Murphy, H. He, F. Bai, IEEE Trans. Plasma Sci. 39, 2862 (2011)

  20. 20.

    M. Hrabovský, V. Kopecký, V. Sember, T. Kavka, O. Chumak, M. Konrád, IEEE Trans. Plasma Sci. 34, 1566 (2006)

  21. 21.

    M. Hrabovský, Open Plasma Phys. J. 2, 99 (2009)

  22. 22.

    Y. Ando, N. Yoshimasa, A. Kobayashi, Vacuum 110, 190 (2014)

  23. 23.

    S.W. Chau, S.Y. Lub, P.J. Wang, Comput. Phys. Commun. 182, 152 (2011)

  24. 24.

    S.W. Chau, C.M. Tai, S.H. Chen, IEEE Trans. Plasma Sci. 42, 3797 (2014)

  25. 25.

    P. Chraska, J. Dubsky, K. Neufuss, J. Pisacka, J. Therm. Spray Technol. 6, 320 (1997)

  26. 26.

    P. Ctibor, O. Roussel, A. Tricoire, J. Eur. Ceram. Soc. 23, 2993 (2003)

  27. 27.

    J. Matejicek, Y. Koza, V. Weinzettl, Fusion Eng. Des. 75–79, 395 (2005)

  28. 28.

    T. Chráska, K. Neufuss, J. Dubský, P. Ctibor, P. Rohan, Ceram. Int. 34, 1229 (2008)

  29. 29.

    H. Ageorges, P. Ctibor, Surf. Coat. Technol. 202, 4362 (2008)

  30. 30.

    J. Matejicek, T. Kavka, G. Bertolissi, P. Ctibor, M. Vilemova, R. Musalek, B. Nevrla, J. Therm. Spray Technol. 22, 744 (2013)

  31. 31.

    R. Musalek, G. Bertolissi, J. Medricky, J. Kotlan, Z. Pala, N. Curry, Surf. Coat. Technol. 268, 58 (2015)

  32. 32.

    P. Ctibor, J. Čížek, J. Sedláček, F. Lukáč, J. Am. Ceram. Soc. 100, 2972 (2017)

  33. 33.

    G. Van Oost, M. Hrabovský, V. Kopecký, M. Konrád, M. Hlína, T. Kavka, O. Chumak, E. Beeckman, J. Verstraeten, Vacuum 80, 1132 (2006)

  34. 34.

    G. Van Oost, M. Hrabovský, V. Kopecký, M. Konrád, M. Hlna, T. Kavka, Vacuum 83, 209 (2009)

  35. 35.

    M. Hlína, M. Hrabovský, T. Kavka, M. Konrád, Waste Manage. 34, 63 (2014)

  36. 36.

    N. Agon, M. Hrabovský, O. Chumak, M. Hlína, V. Kopecký, A. Mašláni, A. Bosmans, L. Helsen, S. Skoblja, G. Van Oost, J. Vierendeels, Waste Manage. 47, 246 (2016)

  37. 37.

    M. Hrabovský, M. Hlína, V. Kopecký, A. Mašláni, O. Živný, P. Křenek, A. Serov, O. Hurba, Plasma Chem. Plasma Process. 37, 739 (2017)

  38. 38.

    I. Hirka, O. Živný, M. Hrabovský, Plasma Chem. Plasma Process. 37, 947 (2017)

  39. 39.

    J. Jenista, IEEE Trans. Plasma Sci. 32, 464 (2004)

  40. 40.

    R.W. Liebermann, J.J. Lowke, J. Quant. Spectrosc. Radiat. Transf. 16, 253 (1976)

  41. 41.

    V.G. Sevast’yanenko, J. Eng. Phys. 36, 138 (1979)

  42. 42.

    J. Jeništa, H. Takana, H. Nishiyama, P. Křenek, M. Bartlová, V. Aubrecht, IEEE Trans. Plasma Sci. 39, 2892 (2011)

  43. 43.

    J. Jeništa, H. Takana, H. Nishiyama, M. Bartlová, V. Aubrecht, P. Křenek, V. Sember, A. Mašláni, Comput. Phys. Commun. 182, 1776 (2011)

  44. 44.

    S.B. Pope, Turbulent Flows (Cambridge University Press, 2000)

  45. 45.

    J. Jeništa, H. Takana, H. Nishiyama, M. Bartlová, V. Aubrecht, P. Křenek, J. Therm. Sci. Technol. 8, 435 (2013)

  46. 46.

    J. Jeništa, H. Takana, H. Nishiyama, M. Bartlová, V. Aubrecht, P. Křenek, J. Phys.: Conf. Ser. 550, 012016 (2014)

  47. 47.

    J. Jeništa, V. Kopecký, M. Hrabovský, in Heat and Mass Transfer under Plasma Conditions, edited by P. Fauchais et al. (Annals of the New York Academy of Sciences, 1999) Vol. 891, p. 64

  48. 48.

    J. Jeništa, J. Phys. D: Appl. Phys. 32, 2763 (1999)

  49. 49.

    J. Jeništa, H. Takana, M. Hrabovský, H. Nishiyama, IEEE Trans. Plasma Sci. 36, 1060 (2008)

  50. 50.

    J. Jeništa, H. Takana, H. Nishiyama, M. Bartlova, V. Aubrecht, M. Hrabovsky, J. High Temp. Mater. Process. 14, 55 (2010)

  51. 51.

    J. Jeništa, H. Takana, H. Nishiyama, M. Bartlová, V. Aubrecht, P. Křenek, M. Hrabovský, T. Kavka, V. Sember, A. Mašláni, J. Phys. D: Appl. Phys. 44, 435204 (2011)

  52. 52.

    J. Jeništa, H. Takana, H. Nishiyama, M. Bartlová, V. Aubrecht, P. Křenek, IEEE Trans. Plasma Sci. 42, 2632 (2014)

  53. 53.

    J. Jeništa, H. Takana, S. Uehara, H. Nishiyama, M. Bartlová, V. Aubrecht, A.B. Murphy, J. Phys. D: Appl. Phys. 51, 045202 (2018)

  54. 54.

    P. Ondáč, A. Mašláni, M. Hrabovský, J. Jeništa, Plasma Chem. Plasma Process. 38, 637 (2018)

  55. 55.

    A.B. Murphy, J. Phys. D: Appl. Phys. 34, R151 (2001)

  56. 56.

    V. Aubrecht, J.J. Lowke, J. Phys. D: Appl. Phys. 27, 2066 (1994)

  57. 57.

    M. Bartlová, V. Aubrecht, Czech. J. Phys. 56, B632 (2006)

  58. 58.

    A.B. Murphy, Sci. Rep. 4, 1 (2014)

  59. 59.

    K. Cheng, X. Chen, Int. J. Heat Mass. Transfer 47, 5139 (2004)

  60. 60.

    A.B. Murphy, C.J. Arundell, Plasma Chem. Plasma Process. 14, 451 (1994)

  61. 61.

    J.O. Hirschfelder, C.F. Curtiss, R.B. Bird, Molecular Theory of Gases and Liquids (Wiley, New York, 1954)

  62. 62.

    S. Chapman, T.G. Cowling, in The Mathematical Theory of Non-uniform Gases, 3rd edn. (Cambridge University Press, 1970)

  63. 63.

    J.H. Ferziger, H.G. Kaper, in Mathematical Theory of Transport Processes in Gases (North-Holland, Amsterdam, 1972)

  64. 64.

    A.B. Murphy, Plasma Chem. Plasma Process. 20, 279 (2000)

  65. 65.

    J.M. Baronnet, G. Debbagh-Noir, J. Lesinski, E. Meillot, in Proceedings of the 7th International Symposium on Plasma Chemistry, Eindhoven, 1985 (1985), p. 836

  66. 66.

    N. Matsunaga, A. Magashima, J. Phys. Chem. 87, 5268 (1983)

  67. 67.

    B. Amaee, W.B. Brown, Chem. Phys. 174, 351 (1993)

  68. 68.

    J.R. Stallcop, H. Partridge, E. Levin, Phys. Rev. A 64, 042722 (2001)

  69. 69.

    G. Chambaud, J.M. Launey, B. Levy, P. Millie, E. Roueff, F. Minh Tran, J. Phys. B: At. Mol. Phys. 13, 4205 (1980)

  70. 70.

    G.D. Flesch, C.Y. Ng, J. Chem. Phys. 94, 2372 (1991)

  71. 71.

    J.A. Fedchak, M.A. Huels, L.D. Doverspike, R.L. Champion, Phys. Rev. A 47, 3796 (1993)

  72. 72.

    Y. Itikawa, At. Data Nucl. Data Tables 21, 69 (1978)

  73. 73.

    P. André, L. Brunet, W. Bussière, J. Caillard, J.M. Lombard, J.P. Picard, Eur. Phys. J. Appl. Phys. 25, 169 (2004)

  74. 74.

    R.A. Svehla, B.J. McBride, NASA Technical Note TN-D-7056, 1973

  75. 75.

    X.N. Zhang, A.B. Murphy, H.-P. Li, W.D. Xia, Plasma Sources Sci. Technol. 23, 065044 (2014)

  76. 76.

    J. Jeništa, J. Phys. D: Appl. Phys. 36, 2995 (2003)

  77. 77.

    S. Yoon, A. Jameson, AIAA J. 26, 1025 (1988)

  78. 78.

    D. Kwak, C. Kiris, J. Housman, Comput. Fluids 41, 51 (2011)

  79. 79.

    P.L. Roe, J. Comput. Phys. 43, 357 (1981)

  80. 80.

    B. van Leer, J. Comput. Phys 32, 101 (1979)

  81. 81.

    T.J. Chung, Computational Fluid Dynamics, 2nd edn. (Cambridge University Press, New York, 2010)

  82. 82.

    J. Jeništa, J. High Temp. Mater. Process. 7, 11 (2003)

  83. 83.

    P. Křenek, Plasma Chem. Plasma Process. 28, 107 (2008)

  84. 84.

    T. Kavka, A. Maslani, O. Chumak, M. Hrabovský, in Proceedings of the 5th International Conference on Flow Dynamics, Sendai, 2008, edited by S. Maruyama (LOC of the 5th ICFD, 2008) p. OS8–11

Download references

Author information

Correspondence to Jiří Jeništa.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jeništa, J., Takana, H., Nishiyama, H. et al. Modelling of inhomogeneous mixing of plasma species in argon–steam arc discharge for broad range of operating conditions. Eur. Phys. J. D 74, 22 (2020). https://doi.org/10.1140/epjd/e2019-100254-3

Download citation

Keywords

  • Plasma Physics