Advertisement

A study of metastable ion Coulomb crystals in a polychromatic all-optical trap

Decay process analysis by using supercomputer simulations
  • Igor V. KrasnovEmail author
  • Leonid P. Kamenshchikov
Regular Article
  • 12 Downloads

Abstract

Metastable ion Coulomb crystal (ICC) in the polychromatic optical superlattice (OSL) created by so-called rectified gradient forces is studied. Our analysis is based on the numerical solution of the nonlinear stochastic differential equations taking into account the trapping and dissipative forces, their quantum fluctuations, and Coulomb repulsion of ions. The key question is how long will this metastable highly ordered crystalline structure persist. The critical parameter determining the ICC destruction times td is the OSL period L (at fixed intensity values of the optical fields). Our simulations demonstrate that td of the ICC, consisting of several tens of mercury ions, experiences giant changes (by four orders of magnitude) at relatively slight variations of the optical superlattice period L in the range from 0.35 to 0.70 mm. We have shown that the dependence td (L) can be approximated by the Arrhenius-like equation with an effective activation energy which is nonlinearly dependent on the OSL period L. These results explain the ultrahigh sensitivity td (L) to the OSL period L and show how to adjust L to ensure all-optical confinement of ICC in the OSL from a fraction of a second to one and half minutes.

Graphical abstract

Keywords

Cold Matter and Quantum Gas 

References

  1. 1.
    C. Schneider, M. Enderlein, T. Huber, T. Schaetz, Nat. Photonics 4, 772 (2010).ADSCrossRefGoogle Scholar
  2. 2.
    T. Schaetz, J. Phys. B: At. Mol. Opt. Phys. 50, 102001 (2017).ADSCrossRefGoogle Scholar
  3. 3.
    J. Schmidt, A. Lambrecht, P. Weckesser, M. Debatin, L. Karpa, T. Schaetz, Phys. Rev. X 8, 021028 (2018).Google Scholar
  4. 4.
    A. Lambrecht, J. Schmidt, P. Weckesser, M. Debatin, L. Karpa, T. Schaetz, Nat. Photonics 11, 704 (2017).ADSCrossRefGoogle Scholar
  5. 5.
    G.Z.K. Horvath, R.C. Thompson, P.L. Knight, Contemp. Phys. 38, 25 (1997).ADSCrossRefGoogle Scholar
  6. 6.
    F. Major, V. Gheorghe, G. Werth, Charged Particle Traps, Physics and Techniques of Charged Particle Field Confinement (Springer-Verlag, Berlin, Berlin, 2005).Google Scholar
  7. 7.
    A.P. Kazantsev, G.I. Surdutovich, V.P. Yakovlev, Mechanical Effect of Light on atoms (World Scientific, Singapore, 1990).Google Scholar
  8. 8.
    R. Grimm, M. Weidemuller, Y.B. Ovchinnikov, in Advances In Atomic, Molecular, and Optical Physics, edited by B. Bederson, H. Walther (Academic Press, 2000), Vol 42, pp. 95–170.ADSCrossRefGoogle Scholar
  9. 9.
    I.V. Krasnov, L.P. Kamenshchikov, Opt. Commun. 312, 192 (2014).ADSCrossRefGoogle Scholar
  10. 10.
    I.V. Krasnov, L.P. Kamenshchikov, Laser Phys. 25, 115501 (2015).ADSCrossRefGoogle Scholar
  11. 11.
    I.V. Krasnov, Chin. Phys. B 24, 063701 (2015).ADSCrossRefGoogle Scholar
  12. 12.
    I.V. Krasnov, L.P. Kamenshchikov, Laser Phys. 28, 105701 (2018).ADSCrossRefGoogle Scholar
  13. 13.
    A.P. Kazantsev, I.V. Krasnov, JETP Lett. 46, 332 (1987).ADSGoogle Scholar
  14. 14.
    A.P. Kazantsev, I.V. Krasnov, J. Opt. Soc. Am. B 6, 2140 (1989).ADSCrossRefGoogle Scholar
  15. 15.
    R. Grimm, Y.B. Ovchinnikov, A.I. Sidorov, V.S. Letokhov, Phys. Rev. Lett. 65, 1415 (1990).ADSCrossRefGoogle Scholar
  16. 16.
    I.V. Krasnov, J. Exp. Theor. Phys. 98, 888 (2004).ADSCrossRefGoogle Scholar
  17. 17.
    R. Grimm, G. Wasik, J. Soding, Y.B. Ovchinnikov, Proceedings of International School of Physics “Enrico Fermi”, Course CXXXI(Amsterdam, 1996), p. 481.Google Scholar
  18. 18.
    E.A. Korsunsky, D.V. Kosachiov, J. Phys. B: At. Mol. Opt. Phy. 30, 5701 (1997).ADSCrossRefGoogle Scholar
  19. 19.
    A. Görlitz, T. Kinoshita, T.W. Hänsch, A. Hemmerich, Phys. Rev. A 64, 011401 (2001).ADSCrossRefGoogle Scholar
  20. 20.
    S. Sharma, B.P. Acharya, A.H.N.C. De Silva, N.W. Parris, B.J. Ramsey, K.L. Romans, A. Dorn, V.L.B. de Jesus, D. Fischer, Phys. Rev. A 97, 043427 (2018).ADSCrossRefGoogle Scholar
  21. 21.
    I.V. Krasnov, Phys. Lett. A 375, 2471 (2011).ADSCrossRefGoogle Scholar
  22. 22.
    I.V. Krasnov, Phys. Lett. A 373, 2291 (2009).ADSCrossRefGoogle Scholar
  23. 23.
    M. Enderlein, T. Huber, C. Schneider, T. Schaetz, Phys. Rev. Lett. 109, 233004 (2012).ADSCrossRefGoogle Scholar
  24. 24.
    R.B. Linnet, I.D. Leroux, M. Marciante, A. Dantan, M. Drewsen, Phys. Rev. Lett. 109, 233005 (2012).ADSCrossRefGoogle Scholar
  25. 25.
    M. Cetina, A. Bylinskii, L. Karpa, D. Gangloff, K.M. Beck, Y. Ge, M. Scholz, A.T. Grier, I. Chuang, V. Vuletić, New J. Phys. 15, 053001 (2013).ADSCrossRefGoogle Scholar
  26. 26.
    V.G. Minogin, V.S. Letochov, Laser Light Pressure on Atoms, Gordon and Breach, New York, 1987.Google Scholar
  27. 27.
    C.W. Gardiner, Handbook of stochastic methods for physics, chemistry and the natural sciences, in Springer Series in Synergetics. 3rd edn. (Springer-Verlag, Berlin, 2004), Vol 13.Google Scholar
  28. 28.
    R. Stratonovich, Topics in the Theory of Random Noise (Gordon and Breach, New York, 1967).Google Scholar
  29. 29.
    H.J. Metcalf, P. van der Straten, Laser Cooling and Trapping (Springer, New York, 2002).Google Scholar
  30. 30.
    R.J. Rafac, B.C. Yong, J.A. Beall, W.M. Itano, D.J. Wineland, J.C. Bergquist, Phys. Rev. Lett. 85, 2462 (2000).ADSCrossRefGoogle Scholar
  31. 31.
    P. Gill, Metrologia 42, S125 (2005).ADSCrossRefGoogle Scholar
  32. 32.
    T. Huber, A. Lambrecht, J. Schmidt, L. Karpa, T. Schaetz, Nat. Commun. 5, 5587 (2014).ADSCrossRefGoogle Scholar
  33. 33.
    W. Swope, H. Andersen, P. Berens, K. Wilson, J. Chem. Phys. 76, 637 (1982).ADSCrossRefGoogle Scholar
  34. 34.
    R. Mannella, Int. J. Mod. Phys. C 13, 1177 (2002).ADSCrossRefGoogle Scholar
  35. 35.
    L. Kamenshchikov, I. Krasnov, CEUR Workshop Proc. 1839, 324 (2016).Google Scholar
  36. 36.
    G.A. Mikhailov, M.A. Marchenko, Russian J. Numer. Anal, Math. Model. 17, 113 (2002).Google Scholar
  37. 37.
    R.S. Berry, T.L. Beck, H.L. Davis, J. Jellinek, Solid Liquid Phase Behavior in Microclusters (Wiley-Blackwell, 2007).Google Scholar
  38. 38.
    R. Berry, B. Smirnov, Phys. Rep. 527, 205 (2013).ADSMathSciNetCrossRefGoogle Scholar
  39. 39.
    A. Cukrowski, M. Telka, Chem. Phys. Lett. 297, 402 (1998).ADSCrossRefGoogle Scholar
  40. 40.
    L.E. Revell, B.E. Williamson, J. Chem. Educ. 90, 1024 (2013).CrossRefGoogle Scholar

Copyright information

© EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Computational Modeling of the Siberian Branch of the Russian Academy of SciencesKrasnoyarskRussia

Personalised recommendations