Advertisement

Guaranteed emergence of genuine entanglement in 3-qubit evolving systems

  • Andrea Valdés-HernándezEmail author
  • Víctor H. T. Brauer
  • F. Santiago Zamora
Regular Article
  • 12 Downloads

Abstract

Multipartite entanglement has been shown to be of particular relevance for a better understanding and exploitation of the dynamics and flow of entanglement in multiparty systems. This calls for analysis aimed at identifying the appropriate processes that guarantee the emergence of multipartite entanglement in a wide range of scenarios. Here we carry on such analysis considering a system of two initially entangled qubits, one of which is let to interact with a third qubit according to an arbitrary unitary evolution. We establish necessary and sufficient conditions on the corresponding Kraus operators, to discern whether the evolved state pertains to either one of the classes of 3-qubit pure states that exhibit some kind of entanglement, namely biseparable, W-, and GHZ- genuine entangled classes. Our results provide a classification of the Kraus operators according to their capacity of producing 3-qubit entanglement, and pave the way for extending the analysis to larger systems and determining the particular interactions that must be implemented in order to create, enhance and distribute entanglement in a specific manner.

Graphical abstract

Keywords

Quantum Optics 

References

  1. 1.
    R. Horodecki, P. Horodecki, M. Horodecki, K. Horodecki, Rev. Mod. Phys. 81, 865 (2009)ADSCrossRefGoogle Scholar
  2. 2.
    M. Walter, D. Gross, J. Eisert, https://arXiv:1612.02437 (2016)
  3. 3.
    L. Aolita, F. de Melo, L. Davidovich, Rep. Prog. Phys. 78, 042001 (2015)ADSCrossRefGoogle Scholar
  4. 4.
    O. Jiménez Farías, A. Valdés-Hernández, G.H. Aguilar, P.H. Souto Ribeiro, S.P. Walborn, L. Davidovich, X.-F. Qian, J.H. Eberly, Phys. Rev. A 85, 012314 (2012)ADSCrossRefGoogle Scholar
  5. 5.
    G.H. Aguilar, O. Jiménez Faras, A. Valdés-Hernández, P.H. Souto Ribeiro, L. Davidovich, S.P. Walborn, Phys. Rev. A 89, 022339 (2014)ADSCrossRefGoogle Scholar
  6. 6.
    G.H. Aguilar, A. Valdés-Hernández, L. Davidovich, S.P. Walborn, P.H. Souto Ribeiro, Phys. Rev. Lett. 113, 240501 (2014)ADSCrossRefGoogle Scholar
  7. 7.
    L. Davidovich, Phys. Scr. 91, 063013 (2016)ADSCrossRefGoogle Scholar
  8. 8.
    M. Yona, T. Yu, J.H. Eberly, J. Phys. B: Atom. Mol. Opt. Phys. 39, 621 (2006)ADSCrossRefGoogle Scholar
  9. 9.
    Y.S. Weinstein, Phys. Rev. A 79, 012318 (2009)ADSCrossRefGoogle Scholar
  10. 10.
    M.P. Almeida, F. de Melo, M. Hor-Meyll, A. Salles, S.P. Walborn, P.H. Souto Ribeiro, L. Davidovich, Science 316, 579 (2007)ADSCrossRefGoogle Scholar
  11. 11.
    J.-W. Pan, D. Bouwmeester, M. Daniell, H. Weinfurter, A. Zeilinger, Nature (London) 403, 515 (2000)ADSCrossRefGoogle Scholar
  12. 12.
    A. Rauschenbeutel, G. Nogues, S. Osnaghi, P. Bertet, M. Brune, J.-M. Raimond, S. Haroche, Science 288, 2024 (2000)ADSCrossRefGoogle Scholar
  13. 13.
    M. Eibl, N. Kiesel, M. Bourennane, C. Kurtsiefer, H. Weinfurter, Phys. Rev. Lett. 92, 077901 (2004)ADSCrossRefGoogle Scholar
  14. 14.
    C.F. Roos, M. Riebe, H. Häffner, W. Hänsel, J. Benhelm, G.P.T. Lancaster, C. Becher, F. Schmidt-Kaler, R. Blatt, Science 304, 5676 (2004)CrossRefGoogle Scholar
  15. 15.
    I. Bengtsson, K. Zyczkowski, https://arXiv:1612.07747 (2016)
  16. 16.
    M. Hillery, V. Bužek, A. Berthiaume, Phys. Rev. A 59, 1829 (1999)ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    Z. Zhao, Y.-A. Chen, A.-N. Zhang, T. Yang, H.J. Briegel, J.-W. Pan, Nature (London) 430, 54 (2004)ADSCrossRefGoogle Scholar
  18. 18.
    A.I. Lvovsky, B.C. Sanders, W. Tittel, Nature Photon. 3, 706 (2009)ADSCrossRefGoogle Scholar
  19. 19.
    E. D’Hondt, P. Panangaden, Quantum Inf. Comput. 6, 173 (2006)MathSciNetGoogle Scholar
  20. 20.
    K. Kraus, States, Effects and Operations: Fundamental Notions of Quantum Theory (Springer Verlag, 1983)Google Scholar
  21. 21.
    W. Dür, G. Vidal, J. Cirac, Phys. Rev. A 62, 62314 (2000)ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    O. Gühne, G. Tóth, Phys. Rep. 474, 1 (2009)ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    A.I. Solomon, C.-L. Ho, J. Phys.: Conf. Ser. 343, 012114 (2012)Google Scholar
  24. 24.
    L. Anticoli, M.G. Ghahi, Int. J. Quantum Inf. 16, 1850055 (2018)CrossRefGoogle Scholar
  25. 25.
    C. Datta, S. Sazim, A. Das, P. Agrawal, Eur. Phys. J. D 72, 157 (2018)ADSCrossRefGoogle Scholar
  26. 26.
    A. Das, C. Datta, P. Agrawal, Phys. Lett. A 381, 3928 (2017)ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    M.-J. Zhao, T.-G. Zhang, X. Li-Jost, S.-M. Fei, Phys. Rev. A 87, 012316 (2013)ADSCrossRefGoogle Scholar
  28. 28.
    N. Brunner, J. Sharam, T. Vertesi, Phys. Rev. Lett. 108, 110501 (2012)ADSCrossRefGoogle Scholar
  29. 29.
    V. Coffman, J. Kundu, W. Wootters, Phys. Rev. A 61, 52306 (2000)ADSCrossRefGoogle Scholar
  30. 30.
    P. Rungta, V. Buzek, C.M. Caves, M. Hillery, G.J. Milburn, Phys. Rev. A 64, 042315 (2001)ADSMathSciNetCrossRefGoogle Scholar
  31. 31.
    W.K. Wootters, Phys. Rev. Lett. 80, 2245 (1998)ADSCrossRefGoogle Scholar
  32. 32.
    J. Audretsch, Entangled Systems, Wiley-VCH (2007)Google Scholar
  33. 33.
    O. Jiménez Faras, G.H. Aguilar, A. Valdés-Hernández, P.H. Souto Ribeiro, L. Davidovich, S.P. Walborn, Phys. Rev. Lett. 109, 150403 (2012)CrossRefGoogle Scholar

Copyright information

© EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Andrea Valdés-Hernández
    • 1
    Email author
  • Víctor H. T. Brauer
    • 1
  • F. Santiago Zamora
    • 1
  1. 1.Instituto de Física, Universidad Nacional Autónoma de MéxicoCiudad de MéxicoMexico

Personalised recommendations