Advertisement

Micro hydration structure of aqueous Li+ by DFT and CPMD

  • 7 Accesses

Abstract

Systematic study on microscopic hydration structure of lithium ion hydrated clusters, [Li(H2O)n]+ (n = 1–20), was carried out by density functional theory (DFT) calculations at ωB97XD/6-311++G(d,p) basis l evel and Car-Parrinello molecular dynamics. The DFT calculation results reveal that the four-coordinated structure is the favorable first hydration sphere for [Li(H2O)n]+ (n = 1–20) clusters in the aqueous phase. The second hydration layer of Li+ is 8 water molecules when n ≥ 12. The energy parameters calculation shows that the structures of the first and second hydration shells are relatively steady. For n > 9, the competitive effects of the second and third hydration layers on water molecules arise and the solvent-solvent interactions for outer hydration shell are strengthened. The results of bond parameters declare that the structure of inner hydration shell has little influence on the H2O molecules of outer hydration layer when the first and second hydration spheres of Li+ are saturated. MD simulation results prove Li+ has a strong first hydration shell with Li–O (I, W) distance of 1.970 Å. Around 8.66 water with Li–O (I, W) distance of 4.10 Å from the second hydration shell. Both DFT and CPMD show Li+ possesses a second hydration shell which is dominantly surrounded by 8 water molecules.

Graphical abstract

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

References

  1. 1.

    P. Jungwirth, J. Phys. Chem. B 118, 10333 (2014).

  2. 2.

    E.D. Glendening, D. Feller, J. Phys. Chem. 99, 3060 (1995).

  3. 3.

    H.J. Bakker, Chem. Rev. 108, 1456 (2008).

  4. 4.

    D. Laage, J.T. Hynes, J. Phys. Chem. B 112, 7697 (2008).

  5. 5.

    K.H. Michaelian, M. Moskovits, Nature 273, 135 (1978).

  6. 6.

    T. Radnai, G. Pálinkás, G.I. Szász, K. Heinzinger, Z. Naturforsch. A 36, 1076 (1981).

  7. 7.

    J.R.C. Van der Maarel, D.H. Powell, A.K. Jawahier, L.H. Leyte-Zuiderweg, G.W. Neilson, M.C. Bellissent-Funel, J. Chem. Phys. 90, 6709 (1989).

  8. 8.

    H. Ohtaki, T. Radnai, Chem. Rev. 93, 1157 (1993).

  9. 9.

    S.B. Rempe, L.R. Pratt, G. Hummer, J.D. Kress, R.L. Martin, A. Redondo, J. Am. Chem. Soc. 122, 966 (2000).

  10. 10.

    T. Yamaguchi, H. Ohzono, M. Yamagami, K. Yamanaka, K. Yoshida, H. Wakita, J. Mol. Liq. 153, 2 (2010).

  11. 11.

    I. Harsányi, P.A. Bopp, A. Vrhovšek, L. Pusztai, J. Mol. Liq. 158, 61 (2011).

  12. 12.

    I. Harsányi, L. Temleitner, B. Beuneu, L. Pusztai, J. Mol. Liq. 165, 94 (2012).

  13. 13.

    P.E. Mason, S. Ansell, G.W. Neilson, S.B. Rempe, J. Phys. Chem. B 119, 2003 (2015).

  14. 14.

    H.H. Loeffler, A.M. Mohammed, Y. Inada, Chem. Phys. Lett. 379, 452 (2003).

  15. 15.

    I. Harsányi, L. Pusztai, J. Chem. Phys. 122, 124512 (2005).

  16. 16.

    H. Du, J.C. Rasaiah, J.D. Miller, J. Phys. Chem. B 111, 209 (2007).

  17. 17.

    G.I. Szasz, K. Heinzinger, W.O. Riede, Z. Naturforsch. A 36, 1067 (1981).

  18. 18.

    M. Mezei, D.L. Beveridge, J. Chem. Phys. 74, 6902 (1981).

  19. 19.

    O. Matsuoka, E. Clementi, M. Yoshimine, J. Chem. Phys. 64, 1351 (1976).

  20. 20.

    J. Fromm, E. Clementi, R.O. Watts, J. Chem. Phys. 62, 1388 (1975).

  21. 21.

    G. Palinkas, T. Radnai, F. Hajdu, Z. Naturforsch. A 35, 107 (1980).

  22. 22.

    A.H. Narten, F. Vaslow, H.A. Levy, J. Chem. Phys. 58, 5017 (1973).

  23. 23.

    N. Ohtomo, K. Arakawa, Bull. Chem. Soc. Japan 52, 2755 (1979).

  24. 24.

    R.M. Lawrence, R.F. Krüh, J. Chem. Phys. 47, 4758 (1967).

  25. 25.

    G. Licheri, G. Piccaluga, G. Pinna, Chem. Phys. Lett. 35, 119 (1975).

  26. 26.

    K. Hashimoto, T. Kamimoto, J. Am. Chem. Soc. 120, 3560 (1998).

  27. 27.

    K. Hashimoto, K. Daigoku, Phys. Chem. Chem. Phys. 11, 9391 (2009).

  28. 28.

    T. Tsurusawa, S. Iwata, J. Phys. Chem. A 103, 6134 (1999).

  29. 29.

    T. Tsurusawa, S. Iwata, J. Chem. Phys. 112, 5705 (2000).

  30. 30.

    E.A. Gomaa, M.A. Tahoon, A. Negm, J. Mol. Liq. 241, 595 (2017).

  31. 31.

    F. Zhu, H. Zhou, Y. Zhou, J. Miao, C. Fang, Y. Fang, P. Sun, H. Ge, H. Liu, Eur. Phys. J. D 70, 246 (2016).

  32. 32.

    Y. Zhou, S. Xu, Y. Fang, C. Fang, F. Zhu, J. Cluster Sci. 27, 1131 (2016).

  33. 33.

    J.D. Chai, M. Head-Gordon, Phys. Chem. Chem. Phys. 10, 6615 (2008).

  34. 34.

    S.F. Boys, F. Bernardi, Mol. Phys. 19, 553 (1970).

  35. 35.

    V.S. Bryantsev, M.S. Diallo, W.A. Goddard, J. Phys. Chem. B 112, 9709 (2008).

  36. 36.

    M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr, J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, D.J. Fox, Gaussian 16 Revision B.01 (Gaussian Inc, Wallingford CT, 2016).

  37. 37.

    A.K. Pathak, T. Mukherjee, D.K. Maity, J. Phys. Chem. A 112, 3399 (2008).

  38. 38.

    A. Amesty, E. Burgueño-Tapia, P. Joseph-Nathan, A.G. Ravelo, A. Est evez-Braun, J. Nat. Prod. 74 (2011) 1061.

  39. 39.

    A.C. Olleta, H.M. Lee, K.S. Kim, J. Chem. Phys. 126, 144311 (2007).

  40. 40.

    J.S. Rao, T.C. Dinadayalane, J. Leszczynski, G.N. Sastry, J. Phys. Chem. A 112, 12944 (2008).

  41. 41.

    CPMD V4.3 Copyright IBM Corp 1990–2019, Copyright MPI fuer Festkoerperforschung Stuttgart 1997–2001, See https://www.cpmd.org/wordpress/.

  42. 42.

    A.D. Becke, Phys. Rev. A 38, 3098 (1988).

  43. 43.

    C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37, 785 (1988).

  44. 44.

    N. Troullier, J. Martins, Phys. Rev. B 43, 1993 (1991).

  45. 45.

    I.F.W. Kuo, C.J. Mundy, M.J. McGrath, J.I. Siepmann, J. VandeVondele, M. Sprik, J. Hutter, B. Chen, M.L. Klein, F. Mohamed, M. Krack, M. Parrinello, J. Phys. Chem. B 108, 12990 (2004).

  46. 46.

    W.G. Hoover, Phys. Rev. A 31, 1695 (1985).

  47. 47.

    K. Laasonen, A. Pasquarello, R. Car, C. Lee, D. Vanderbilt, Phys. Rev. B 47, 10142 (1993).

  48. 48.

    Y. Zhou, C. Fang, Y. Fang, F. Zhu, H. Ge, H. Liu, Russ. J. Phys. Chem. A 91, 2539 (2017).

Download references

Author information

Correspondence to Yong Q. Zhou.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, H.Y., Zhou, Y.Q., Zhu, F.Y. et al. Micro hydration structure of aqueous Li+ by DFT and CPMD. Eur. Phys. J. D 74, 2 (2020) doi:10.1140/epjd/e2019-100233-2

Download citation

Keywords

  • Molecular Physics and Chemical Physics