Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Reactive molecular dynamics simulations of organometallic compound W(CO)6 fragmentation,

  • 32 Accesses

Abstract

Irradiation- and collision-induced fragmentation studies provide information about geometry, electronic properties and interactions between structural units of various molecular systems. Such knowledge brings insights into irradiation-driven chemistry of molecular systems which is exploited in different technological applications. An accurate atomistic-level simulation of irradiation-driven chemistry requires reliable models of molecular fragmentation which can be verified against mass spectrometry experiments. In this work fragmentation of a tungsten hexacarbonyl, W(CO)6, molecule is studied by means of reactive molecular dynamics simulations. The quantitatively correct fragmentation picture including different fragmentation channels is reproduced. We show that distribution of the deposited energy over all degrees of freedom of the parent molecule leads to thermal evaporation of CO groups and the formation of W(CO)n+ (n = 0 – 5) fragments. Another type of fragments, WC(CO)n+ (n = 0 – 4), is produced due to cleavage of a C–O bond as a result of localized energy deposition. Calculated fragment appearance energies are in good agreement with experimental data. These fragmentation mechanisms have a general physical nature and should take place in radiation-induced fragmentation of different molecular and biomolecular systems.

Graphical abstract

This is a preview of subscription content, log in to check access.

References

  1. 1.

    J.P. Connerade, A.V. Solov’yov (eds.), Latest Advances in Atomic Cluster Collisions: Structure and Dynamics from the Nuclear to the Biological Scale (Imperial College Press, London, UK, 2008)

  2. 2.

    G. García Gómez-Tejedor, M.C. Fuss (eds.), Radiation Damage in Biomolecular Systems (Springer Science + Business Media B.V., Dordrecht, The Netherlands, 2012)

  3. 3.

    R.M. Sweet, A.D. Woodhead (eds.), Synchrotron Radiation in Structural Biology (Springer-Verlag, US, Boston, MA, 1989)

  4. 4.

    T. Schlathölter, F. Alvarado, R. Hoekstra, Nucl. Instrum. Methods B 233, 62 (2005)

  5. 5.

    R. Spezia, A. Martin-Somer, V. Macaluso, Z. Homayoon, S. Pratihar, W.L. Hase, Faraday Discuss. 195, 599 (2016)

  6. 6.

    J.C. Poully, J. Miles, S. De Camillis, A. Cassimi, J.B. Greenwood, Phys. Chem. Chem. Phys. 17, 7172 (2015)

  7. 7.

    A.V. Solov’yov (ed.), , Nanoscale Insights into Ion-Beam Cancer Therapy (Springer International Publishing, Cham, Switzerland, 2017)

  8. 8.

    I. Utke, P. Hoffmann, J. Melngailis, J. Vac. Sci. Technol. B 26, 1197 (2008)

  9. 9.

    S. Utke, P. Moshkalev(eds.), Russel, Nanofabrication Using Focused Ion and Electron Beams Principles and Applications 9Oxford University Press, New York, NY, 2012)

  10. 10.

    M. Huth, F. Porrati, O.V. Dobrovolskiy, Microelectron. Eng. 185–186, 9 (2018)

  11. 11.

    J.M. De Teresa, A. Fernández-Pacheco, R. Córdoba, L. Serrano-Ramón, S. Sangiao, M.R. Ibarra, J. Phys. D: Appl. Phys. 49, 243003 (2016)

  12. 12.

    M. Huth, F. Porrati, C. Schwalb, M. Winhold, R. Sachser, M. Dukic, J. Adams, G. Fantner, Beilstein J. Nanotechnol. 3, 597 (2012)

  13. 13.

    T.P.R. Kumar, P. Weirich, L. Hrachowina, M. Hanefeld, R. Bjornsson, H.R. Hrodmarsson, S. Barth, D.H. Fairbrother, M. Huth, O. Ingólfsson, Beilstein J. Nanotechnol. 9, 555 (2018)

  14. 14.

    F. Porrati, M. Pohlit, J. Müller, S. Barth, F. Biegger, C. Gspan, H. Plank, M. Huth, Nanotechnology 26, 475701 (2015)

  15. 15.

    S. Beranová, C. Wesdemiotis, J. Am. Soc. Mass Spectrom. 5, 1093 (1994)

  16. 16.

    P.J. Clements, F.R. Sale, Metall. Trans. B 7, 171 (1976)

  17. 17.

    R.G. Cooks, T. Ast, B. Kralj, V. Kramer, D. Žigon, J. Am. Soc. Mass Spectrom. 1, 16 (1990)

  18. 18.

    V.H. Wysocki, H.I. Kenttämaa, R.G. Cooks, Int. J. Mass Spectrom. Ion Processes 75, 181 (1987)

  19. 19.

    R. Susič, L. Lu, D.E. Riederer Jr, D. Žigon, R.G. Cooks, T. Ast, J. Mass Spectrom. 27, 769 (1992)

  20. 20.

    K. Wnorowski, M. Stano, C. Matias, S. Denifl, W. Barszczewska, Š. Matejčík, Rapid Commun. Mass Spectrom. 26, 2093 (2012)

  21. 21.

    M. Allan, M. Lacko, P. Papp, Š. Matejčík, M. Zlatar, I.I. Fabrikant, J. Kočišek, J. Fedor, Phys. Chem. Chem. Phys. 20, 11692 (2018)

  22. 22.

    K. Wnorowski, M. Stano, W. Barszczewska, A. Jówko, Š. Matejčík, Int. J. Mass Spectrom. 314, 42 (2012)

  23. 23.

    M. Neustetter, E. Jabbour Al Maalouf, P. Limão Vieira, S. Denifl, J. Chem. Phys. 145, 054301 (2016)

  24. 24.

    M. Lacko, P. Papp, K. Wnorowski, Š. Matejčík, Eur. Phys. J. D 69, 84 (2015)

  25. 25.

    J. Lengyel, J. Fedor, M. Fárník, J. Phys. Chem. C 120, 17810 (2016)

  26. 26.

    G.B. Sushko, I.A. Solov’yov, A.V. Verkhovtsev, S.N. Volkov, A.V. Solov’yov, Eur. Phys. J. D 70, 12 (2016)

  27. 27.

    G.B. Sushko, I.A. Solov’yov, A.V. Solov’yov, Eur. Phys. J. D 70, 217 (2016)

  28. 28.

    I.A. Solov’yov, A.V. Korol, A.V. Solov’yov, Multiscale Modeling of Complex Molecular Structure and Dynamics with MBN Explorer (Springer International Publishing, Cham, Switzerland, 2017)

  29. 29.

    I.A. Solov’yov, A.V. Yakubovich, P.V. Nikolaev, I. Volkovets, A.V. Solov’yov, J. Comput. Chem. 33, 2412 (2012)

  30. 30.

    P. de Vera, E. Surdutovich, N.J. Mason, F.J. Currell, A.V. Solov’yov, Eur. Phys. J. D 72, 147 (2018)

  31. 31.

    G.B. Sushko, I.A. Solov’yov, A.V. Solov’yov, J. Mol. Graphics Modell. 88, 247 (2019)

  32. 32.

    A. Verkhovtsev, A.V. Korol, A.V. Solov’yov, Eur. Phys. J. D 71, 212 (2017)

  33. 33.

    A.D. MacKerell, D. Bashford, M. Bellott, R.L. Dunbrack, J.D. Evanseck, M.J. Field, S. Fischer, J. Gao, H. Guo, S. Ha, D. Joseph-McCarthy, L. Kuchnir, K. Kuczera, F.T. Lau, C. Mattos, S. Michnick, T. Ngo, D.T. Nguyen, B. Prodhom, W.E. Reiher, B. Roux, M. Schlenkrich, J.C. Smith, R. Stote, J. Straub, M. Watanabe, J. Wiórkiewicz-Kuczera, D. Yin, M. Karplus, J. Phys. Chem. B 102, 3586 (1998)

  34. 34.

    M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, Ö. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, D.J. Fox, Gaussian 09, Revision A.02 (Gaussian Inc., Wallingford, CT, 20160

  35. 35.

    S.V. Arnesen, H.M. Seip, Acta Chem. Scand. 20, 2711 (1966)

  36. 36.

    R.K. Szilagyi, G. Frenking, Organometallics 16, 4807 (1997)

  37. 37.

    A. Diefenbach, F.M. Bickelhaupt, G. Frenking, J. Am. Chem. Soc. 122, 6449 (2000)

  38. 38.

    L.G. Gerchikov, A.N. Ipatov, A.V. Solov’yov, W. Greiner, J. Phys. B: At. Mol. Opt. Phys. 33, 4905 (2000)

  39. 39.

    G.D. Michels, G.D. Flesch, H.J. Svec, Inorg. Chem. 19, 479 (1980)

  40. 40.

    R.E. Winters, R.W. Kiser, Inorg. Chem. 4, 157 (1965)

  41. 41.

    D.R. Bidinosti, N.S. McIntyre, Can. J. Chem. 45, 641 (1967)

  42. 42.

    A. Foffani, S. Pignataro, B. Cantone, F. Grasso, Z. Phys, Chem. 45, 79 (1965)

  43. 43.

    F. Qi, S. Yang, L. Sheng, H. Gao, Y. Zhang, S. Yu, J. Chem. Phys. 107, 10391 (1997)

  44. 44.

    B. Darwent, Bond Dissociation Energies in Simple Molecules (National Bureau of Standards, Washington, 1970)

  45. 45.

    J.A. Dean, Lange’s Handbook of Chemistry (McGraw-Hill, New York, 1972)

Download references

Author information

Correspondence to Pablo de Vera.

Additional information

Contribution to the Topical Issue “Dynamics of Systems on the Nanoscale (2018)”, edited by Ilko Bald, Ilia A. Solov’yov, Nigel J. Mason and Andrey V. Solov’yov.

Supplementary material in the form of one mp4 file available from the Journal web page at https://doi.org/10.1140/epjd/e2019-100232-9

Electronic supplementary material

Supplementary Material

MP4 file

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

de Vera, P., Verkhovtsev, A., Sushko, G. et al. Reactive molecular dynamics simulations of organometallic compound W(CO)6 fragmentation,. Eur. Phys. J. D 73, 215 (2019). https://doi.org/10.1140/epjd/e2019-100232-9

Download citation