Advertisement

Pointer-based model for state reduction in momentum space

  • Fabio Di PumpoEmail author
  • Matthias Freyberger
Regular Article

Abstract

We revisit the pointer-based measurement concept of von Neumann which allows us to model a quantum counterpart of the classical time-of-flight (ToF) momentum. Our approach is based on the Hamiltonian for a particle interacting with two quantum pointers serving as basic measurement devices. The corresponding dynamics leads to a pointer-based ToF observable for the operational momentum of the particle. We can consider single measurements of our quantum pointers and show that this process will result in a state reduction for a single particle being downstream of the time-of-flight setup.

Graphical abstract

References

  1. 1.
    J. von Neumann, Mathematische Grundlagen der Quantenmechanik (Springer, Berlin, Heidelberg, 1932)Google Scholar
  2. 2.
    F. Gallone, Hilbert Space and Quantum Mechanics (World Scientific Publishing Company, 2014)Google Scholar
  3. 3.
    F. David, The Formalisms of Quantum Mechanics: An Introduction, Lecture Notes in Physics (Springer International Publishing, 2014)Google Scholar
  4. 4.
    W.E. Lamb, Phys. Today 22, 23 (1969)CrossRefGoogle Scholar
  5. 5.
    W.H. Zurek, Phys. Rev. D 24, 1516 (1981)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    W.H. Zurek, Phys. Rev. D 26, 1862 (1982)ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    P. Busch, M. Grabowski, P.J. Lahti, Operational Quantum Physics (Springer, Berlin, Heidelberg, 1995)CrossRefGoogle Scholar
  8. 8.
    D.N. Klyshko, Phys.-Usp. 41, 885 (1998)ADSCrossRefGoogle Scholar
  9. 9.
    G.M. D’Ariano, , AIP Conf. Proc. 889, 79 (2007)ADSCrossRefGoogle Scholar
  10. 10.
    B.-G. Englert, K. Wódkiewicz, Phys. Rev. A 51, R2661 (1995)ADSCrossRefGoogle Scholar
  11. 11.
    M. Hillery, R.F. O’Connell, M.O. Scully, E.P. Wigner, Phys. Rep. 106, 121 (1984)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    W.P. Schleich, Quantum Optics in Phase Space (Wiley-VCH, Berlin, Weinheim, 2001)Google Scholar
  13. 13.
    K. Vogel, H. Risken, Phys. Rev. A 40, 2847 (1989)ADSCrossRefGoogle Scholar
  14. 14.
    U. Leonhardt, in Measuring the Quantum State of Light (Cambridge University Press, 1997), Vol. 22Google Scholar
  15. 15.
    M. Paris, J. Rehacek, Quantum State Estimation, Lecture Notes in Physics (Springer, Berlin, Heidelberg, 2004)Google Scholar
  16. 16.
    E. Arthurs, J.L. Kelly, Bell Syst. Tech. J. 44, 725 (1965)CrossRefGoogle Scholar
  17. 17.
    J.L. Park, H. Margenau, Int. J. Theor. Phys. 1, 211 (1968)CrossRefGoogle Scholar
  18. 18.
    S. Stenholm, Ann. Phys. 218, 233 (1992)ADSCrossRefGoogle Scholar
  19. 19.
    P. Busch, Int. J. Theor. Phys. 24, 63 (1985)MathSciNetCrossRefGoogle Scholar
  20. 20.
    K. Wódkiewicz, Phys. Lett. A 124, 207 (1987)ADSCrossRefGoogle Scholar
  21. 21.
    M. Bußhardt, M. Freyberger, Phys. Rev. A 82, 042117 (2010)ADSCrossRefGoogle Scholar
  22. 22.
    R. Heese, M. Freyberger, Phys. Rev. A 87, 012123 (2013)ADSCrossRefGoogle Scholar
  23. 23.
    J.G. Muga, C.R. Leavens, Phys. Rep. 338, 353 (2000)ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    N. Grot, C. Rovelli, R.S. Tate, Phys. Rev. A 54, 4676 (1996)ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    V. Delgado, J.G. Muga, Phys. Rev. A 56, 3425 (1997)ADSMathSciNetCrossRefGoogle Scholar
  26. 26.
    J. León, J. Phys. A 30, 4791 (1997)ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    C. Anastopoulos, N. Savvidou, J. Math. Phys. 47, 122106 (2006)ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    C. Anastopoulos, N. Savvidou, Phys. Rev. A 86, 012111 (2012)ADSCrossRefGoogle Scholar
  29. 29.
    C. Anastopoulos, N. Savvidou, Phys. Rev. A 95, 052120 (2017)ADSCrossRefGoogle Scholar
  30. 30.
    C. Anastopoulos, N. Savvidou, J. Math, Phys. 60, 032301(2019)ADSMathSciNetCrossRefGoogle Scholar
  31. 31.
    Y. Aharonov, D. Bohm, Phys. Rev. 122, 1649 (1961)ADSMathSciNetCrossRefGoogle Scholar
  32. 32.
    J. Kijowski, Rep. Math. Phys. 6, 361 (1974)ADSCrossRefGoogle Scholar
  33. 33.
    A. Peres, Am. J. Phys. 48, 552 (1980)ADSCrossRefGoogle Scholar
  34. 34.
    Y. Aharonov, J. Oppenheim, S. Popescu, B. Reznik, W.G. Unruh, Phys. Rev. A 57, 4130 (1998)ADSMathSciNetCrossRefGoogle Scholar
  35. 35.
    J.M. Yearsley, D.A. Downs, J.J. Halliwell, A.K. Hashagen, Phys. Rev. A 84, 022109 (2011)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institut für Quantenphysik and Center for Integrated Quantum Science and Technology (IQST), Universität UlmUlmGermany

Personalised recommendations