Advertisement

Fluid simulation of ionization process in iodine cusped field thruster

  • Xiang Niu
  • Xin Li
  • Hui LiuEmail author
  • Daren Yu
Regular Article
  • 8 Downloads

Abstract

In this paper, a one dimensional fluid model of iodine cusped field thruster is built along two typical electron paths. Simulation results show typical low frequency oscillations of plasma parameters. Density of I2+ is similar to that of I+, while density of I is smaller than those of I+ by two orders of magnitude. Simulation results show that ionization rate and thrust of iodine cusped field thruster are a little higher than that of xenon cusped field thruster. However, electron density of main ionization region in iodine cusped field thruster is much higher than that in xenon cusped field thruster, which may be due to diversity of plasma components and complexity of ionization process. Compared with xenon cusped field thruster, ionization intensity is enhanced and main ionization region moves towards downstream of channel in iodine cusped field thruster, which is related to dissociation process of I2. With decrease of leak electron proportion, ionization strength of secondary ionization region located in the middle magnetic cusp is enhanced and ionization strength of main ionization region is weakened. The main ionization region moves towards upstream of channel. These phenomena are mainly because confinement of electrons by middle magnetic cusp is enhanced, which causes excessive consumption of I2 and decrease of I2 dissociation intensity.

Graphical abstract

Keywords

Plasma Physics 

References

  1. 1.
    G. Kornfeld, N. Koch, H.-P. Harmann, in 30th Int. Electric Propulsion Conf., Florence, Italy, 17–20 September 2007, IEPC-2007-108 (2007)Google Scholar
  2. 2.
    G. Kornfeld, N. Koch, G. Coustou, in 28th Int. Electric Propulsion Conf., Toulouse, France, 17–21 March 2003, IEPC-2003-212 (2003)Google Scholar
  3. 3.
    D.G. Courtney, M. Martnez-Sànchez, Presented at the 30th Int. Electric Propulsion Conf., Florence, Italy, 17–20 September 2007, IEPC-2007-039 (2007)Google Scholar
  4. 4.
    N.A. MacDonald, C.V. Young, M.A. Cappelli, W.A. Hargus Jr., J. Appl. Phys. 111, 093303 (2012)ADSCrossRefGoogle Scholar
  5. 5.
    G. Kornfeld, H.-P. Harmann, N. Koch, in 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Arizona, 10–13 July 2005, AIAA 2005-4223 (2005)Google Scholar
  6. 6.
    K. Matyash, R. Schneider, A. Mutzke, O. Kalentev, F. Taccogna, N. Koch, M. Schirra, IEEE Trans. Plasma Sci. 38, 2274 (2010)ADSCrossRefGoogle Scholar
  7. 7.
    G. Kornfeld, N. Koch, H.-P. Harmann, P. Micheli, H. Meusemann, E. Gengembre, in 42nd AIAA/ ASME/SAE/ASEE, Joint Propulsion Conf. and Exhibit, California, America, 09–13 July 2006, AIAA 2006-60150 (2006)Google Scholar
  8. 8.
    Y. Ding, L. Ma, Z. Xu, M. Li, H. Huo, S. Tan, X. Gou, X. Wang, F. Yang, W. Mai, Y. Liu, Geod. Geodyn. 6, 299 (2015)CrossRefGoogle Scholar
  9. 9.
    M. Tsay, J. Model, C. Barcroft, J. Frongillo, J. Zwahlen, C. Feng, Integrated testing of iodine BIT-3 RF ion propulsion system for 6U cubesate applications, in Atlanta: 35th International Electric Propulsion Conference (2017)Google Scholar
  10. 10.
    J.W. Dankanich, D. Calvert, H. Kamhawi, T. Hickman, J. Szabo, T. Hickman, The Iodine Satellite (iSat) project development towards critical design review, in Kobe: 34th International Electric Propulsion Conference (2015)Google Scholar
  11. 11.
    J.W. Dankanich, J. Szabo, B. Pote, S. Oleson, H. Kamhawi, Mission and system advantages of iodine hall thrusters, in Cleveland: 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference (2014)Google Scholar
  12. 12.
    J. Szabo, M. Robin, S. Paintal, B. Pote, V. Hruby, C. Freeman, IEEE Trans. Plasma Sci. 43, 141 (2015)ADSCrossRefGoogle Scholar
  13. 13.
    R.A. Dressler, Y.-H. Chiu, D.J. Levandier, Propellant alternatives for ion and hall effect thruster, in Reno: 38th Aerospace Sciences Meeting (2000)Google Scholar
  14. 14.
    F. Paganucci, M.M. Saravia, M.M. Mininni, L. Bernazzani, A. Ceccarini, T. Boulzaguet, G. Pellegrini, C. Ducci, D. Pedrini, T. Andreussi, Progress on the development of an iodine-fed hall effect thruster, in Atlanta: 35th International Electric Propulsion Conference (2017)Google Scholar
  15. 15.
    A.C. Hillier, R.D. Branam, R.E. Huffman, J. Szabo, S. Paintal, High thrust density propellants in hall thrusters, in Orlando: 49th Aerospace Sciences Meeting (2011)Google Scholar
  16. 16.
    H. Kamhawi, T. Haag, G. Benavides, T. Hickman, T. Smith, G. Williams, J. Myers, K. Polzin, J. Dankanich, L. Byrne, J. Szabo, L. Lee, Overview of iodine propellant hall thruster development activities at NASA Glenn research center, in Salt Lake City: 52nd AIAA/SAE/ASEE Joint Propulsion Conference (2016)Google Scholar
  17. 17.
    J. Szabo, M. Robin, Iodine plasma species measurements in a hall effect thruster plume, in San Jose: 49th AIAA/ASME/SAME/ASEE Joint Propulsion Conference (2013)Google Scholar
  18. 18.
    J. Szabo, B. Pote, S. Paintal, M. Robin, A. Hillier, R.D. Branam, R.E. Huffman, J. Propul. Power 28, 848 (2012)CrossRefGoogle Scholar
  19. 19.
    J. Szabo, M. Robin, S. Paintal, B. Pote, V. Hruby, C. Freeman, Iodine propellant space propulsion, in Washington: 33th International Electric Propulsion Conference (2013)Google Scholar
  20. 20.
    M. Tsay, J. Frongillo, K. Hohman, Iodine-fueled mini RF ion thruster for CubeSat applications, in Kobe: 34th International Electric Propulsion Conference (2015)Google Scholar
  21. 21.
    W. Gartner, D. Zschatzsch, K. Holste, P.J. Klar, Characterization of the operation of RITs with iodine, in Atlanta: 35th International Electric Propulsion Conference (2017)Google Scholar
  22. 22.
    K. Holste, W. Gärtner, D. Zschätzsch, S. Scharmann, P. Köhler, P. Dietz, P.J. Klar, Eur. Phys. J. D 72, 9 (2018)ADSCrossRefGoogle Scholar
  23. 23.
    M. Choi, Modeling an iodine hall thruster plume in the Iodine Satellite (iSAT), in Phoenix: 8th Spacecraft Propulsion Meeting (2016)Google Scholar
  24. 24.
    P. Grondein, T. Lafleur, P. Chabert, A. Aanesland, Phys. Plasmas 23, 033514 (2016)ADSCrossRefGoogle Scholar
  25. 25.
    H. Liu, H. Wu, Y. Zhao, D. Yu, C. Ma, D. Wang, H. Wei, Phys. Plasmas 21, 090706 (2014)ADSCrossRefGoogle Scholar
  26. 26.
    A.I. Morozov, V.V. Savel’ev, Plasma Phys. Rep. 26, 875 (2000)ADSCrossRefGoogle Scholar
  27. 27.
    A.I. Morozov, V.V. Savel’ev, Plasma Phys. Rep. 26, 219 (2000)ADSCrossRefGoogle Scholar
  28. 28.
    S. Barral, E. Ahedo, in 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference (American Institute of Aeronautics and Astronautics, 2006)Google Scholar
  29. 29.
    S. Barral, E. Ahedo, Phys. Rev. E 79, 46401 (2009)ADSCrossRefGoogle Scholar
  30. 30.
    K. Hara, I.D. Boyd, in IEPC-2013-266, 33rd International Electric Propulsion Conference, Washington, DC (2013)Google Scholar
  31. 31.
    K. Hara, M.J. Sekerak, I.D. Boyd, A.D. Gallimore, J. Appl. Phys. 115, 203304 (2013)ADSCrossRefGoogle Scholar
  32. 32.
    K. Shinano, H. Itô, J. Phys. Soc. Jpn. 21, 1822 (1966)ADSCrossRefGoogle Scholar
  33. 33.
    X. Niu, H. Liu, C. Yang, W. Jiang, D. Yu, Z. Ning, Phys. Plasmas 25, 040701 (2018)ADSCrossRefGoogle Scholar
  34. 34.
    J.R. Henry, Etude d’un plasma de gaz electronegatif. Spectrometrie demasse et propagation des ondes ioniques longitudinales, Ph.D. thesis, Université Paris VII, 1972Google Scholar
  35. 35.
    H. Liu, X. Niu, H. Wu, D. Yu, Plasma Sci. Technol. 21, 045502 (2019)ADSCrossRefGoogle Scholar
  36. 36.
    S. Barral, E. Ahedo, Phys. Rev. E 79, 046401 (2009)ADSCrossRefGoogle Scholar
  37. 37.
    S. Gildea, T. Matlock, P. Lozano, M. Martinez-Sanchez, Low frequency oscillations in the diverging cusped-field thruster, in Proceedings of the 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conf. and Exhibition (AIAA, Nashville, TN, 2010)Google Scholar
  38. 38.
    H. Liu, H. Wu, Y. Meng, S. Yang, J. Zhang, D. Yu, Contrib. Plasma Phys. 55, 545 (2015)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Lab of Plasma Propulsion, Harbin Institute of Technology (HIT)HarbinP.R. China

Personalised recommendations