Feasibility of the ion-trap simulation of a class of non-equilibrium phase transitions

  • Alba Ramos
  • Cecilia CormickEmail author
Regular Article


Our work analyzes the potential of ion traps for the experimental simulation of non-equilibrium phase transitions observed in certain spin-chain models which can be mapped to free-fermion systems. In order to make the dynamics more accessible to an experimenter, we first consider relatively small systems, with few particles. We analyze phase transitions in the non-equilibrium asymptotic regimes of an XY spin chain with a transverse magnetic field and coupled to Markovian baths at the end sites. We study a static open system and a case when the spin chain is periodically kicked. Notably, in the latter case for some anisotropy parameters the dependence on the system size converges rapidly to the many-particle limit, thus facilitating the experimental observation of the dynamics. We also define local observables that indicate the presence of the quantum phase transitions of interest, and we study the effects of the long-range character of the typical interactions obtained in ion traps.

Graphical abstract


Quantum Information 


  1. 1.
    M. Žnidarič, J. Stat. Mech. 2010, L05002 (2010)CrossRefGoogle Scholar
  2. 2.
    A. Tomadin, S. Diehl, P. Zoller, Phys. Rev. A 83, 013611 (2011)ADSCrossRefGoogle Scholar
  3. 3.
    L. Banchi, P. Giorda, P. Zanardi, Phys. Rev. E 89, 022102 (2014)ADSCrossRefGoogle Scholar
  4. 4.
    M. Heyl, A. Polkovnikov, S. Kehrein, Phys. Rev Lett. 110, 135704 (2013)ADSCrossRefGoogle Scholar
  5. 5.
    R. Vosk, E. Altman, Phys. Rev. Lett. 112, 217204 (2014)ADSCrossRefGoogle Scholar
  6. 6.
    G. Mazza, M. Fabrizio, Phys. Rev. B 86, 184303 (2012)ADSCrossRefGoogle Scholar
  7. 7.
    S. Sachdev, Quantum Phase Transitions (Cambridge University Press, Cambridge, England, 1999)Google Scholar
  8. 8.
    S. Diehl, A. Tomadin, A. Micheli, R. Fazio, P. Zoller, Phys. Rev. Lett. 105, 015702 (2010)ADSCrossRefGoogle Scholar
  9. 9.
    K. Baumann, C. Guerlin, F. Brennecke, T. Esslinger, Nature 464, 1301 (2010)ADSCrossRefGoogle Scholar
  10. 10.
    P. Jurcevic, H. Shen, P. Hauke, C. Maier, T. Brydges, C. Hempel, B.P. Lanyon, M. Heyl, R. Blatt, C.F. Roos, Phys. Rev. Lett. 119, 080501 (2017)ADSCrossRefGoogle Scholar
  11. 11.
    S. Genway, W. Li, C. Ates, B.P. Lanyon, I. Lesanovsky, Phys. Rev. Lett. 112, 023603 (2014)ADSCrossRefGoogle Scholar
  12. 12.
    G.A. Álvarez, E.P. Danieli, P.R. Levstein, H.M. Pastawski, J. Chem. Phys. 124, 194507 (2006)ADSCrossRefGoogle Scholar
  13. 13.
    S. Morrison, A.S. Parkins, Phys. Rev. Lett. 100, 040403 (2008)ADSCrossRefGoogle Scholar
  14. 14.
    T. Prosen, I. Pizôrn, Phys. Rev. Lett. 101, 105701 (2008)ADSCrossRefGoogle Scholar
  15. 15.
    T. Prosen, J. Stat. Mech. 2010, P07020 (2010)CrossRefGoogle Scholar
  16. 16.
    T. Prosen, E. Ilievski, Phys. Rev. Lett. 107, 060403 (2011)ADSCrossRefGoogle Scholar
  17. 17.
    D. Porras, J. Cirac, Phys. Rev. Lett. 92, 207901 (2004)ADSCrossRefGoogle Scholar
  18. 18.
    R. Blatt, C.F. Roos, Nat. Phys. 8, 277 (2012)CrossRefGoogle Scholar
  19. 19.
    J. Zhang, G. Pagano, P.W. Hess, A. Kyprianidis, P. Becker, H. Kaplan, A.V. Gorshkov, Z.-X. Gong, C. Monroe, Nature 551, 601 (2017)ADSCrossRefGoogle Scholar
  20. 20.
    J.W. Britton, B.C. Sawyer, A.C. Keith, C.-C.J. Wang, J.K. Freericks, H. Uys, M.J. Biercuk, J.J. Bollinger, Nature 484, 489 (2012)ADSCrossRefGoogle Scholar
  21. 21.
    E. Lieb, T. Schultz, D. Mattis, Ann. Phys. 16, 407 (1961)ADSCrossRefGoogle Scholar
  22. 22.
    P. Pfeuty, Ann. Phys. 57, 79 (1970)ADSCrossRefGoogle Scholar
  23. 23.
    T. Prosen, New J. Phys. 10, 043026 (2008)ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    K. Kim, S. Korenblit, R. Islam, E.E. Edwards, M.-S. Chang, C. Noh, H. Carmichael, G.-D. Lin, L.-M. Duan, C.C. Joseph Wang, J.K. Freericks, C. Monroe, New J. Phys. 13, 105003 (2011)ADSCrossRefGoogle Scholar
  25. 25.
    C. Cormick, A. Bermudez, S. Huelga, M. Plenio, New J. Phys. 15, 073027 (2013)ADSCrossRefGoogle Scholar
  26. 26.
    R. Islam, C. Senko, W.C. Campbell, S. Korenblit, J. Smith, A. Lee, E.E. Edwards, C.-C.J. Wang, J.K. Freericks, C. Monroe, Science 340, 583 (2013)ADSCrossRefGoogle Scholar
  27. 27.
    P. Jurcevic, B.P. Lanyon, P. Hauke, C. Hempel, P. Zoller, R. Blatt, C.F. Roos, Nature 511, 13461 (2014)CrossRefGoogle Scholar
  28. 28.
    C. Weedbrook, S. Pirandola, R. García-Patrón, N.J. Cerf, T.C. Ralph, J.H. Shapiro, S. Lloyd, Rev. Mod. Phys. 84, 621 (2012)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Instituto de Física Enrique Gaviola, CONICET and Universidad Nacional de Córdoba, Ciudad UniversitariaCórdobaArgentina

Personalised recommendations