Advertisement

Optical current, momentum and angular momentum in anisotropic materials exposed to detailed balance

  • Bart A. van TiggelenEmail author
Regular Article
  • 10 Downloads

Abstract

This work investigates the theory behind a thought experiment that intends to measure momentum and angular momentum of matter exposed to “isotropic radiative noise’’. Radiative momentum has been a controversial subject for decades. The radiative momentum of isotropic noise is intuitively expected to be zero. We formulate the general features of the isotropic noise such as equipartition of energy and the vanishing of integrated Poynting vector. We demonstrate that in bi-anisotropic materials, a finite radiative momentum persists that performs work on the matter when its parameters change slowly. We find that Faraday rotation in the scattering of the radiative noise induces an angular momentum along the applied external magnetic field. Also, the Poynting vector is found to circulate around the matter, raising the question whether it really describes the energy flow. These effects are small and hard to measure in any real experiment. Yet, they are surprising predictions of the classical, macroscopic Maxwell equations, and make contact with the outcome of recent QED calculations done for the quantum vacuum.

Graphical abstract

Keywords

Optical Phenomena and Photonics 

References

  1. 1.
    I. Brevik, Phys. Rep. 52, 133 (1979).ADSCrossRefGoogle Scholar
  2. 2.
    F.N.H. Robinson, Phys. Rep. 16, 313 (1975).ADSCrossRefGoogle Scholar
  3. 3.
    R. Peierls, in More Surprises in Theoretical Physics, (Princeton University Press, 1991), pp. 30–42.Google Scholar
  4. 4.
    D.F. Nelson, Phys. Rev. A 44, 3985 (1991).ADSCrossRefGoogle Scholar
  5. 5.
    S.M. Barnett, R. Loudon, Philos. Trans. R. Soc. A 368, 927 (2010).ADSCrossRefGoogle Scholar
  6. 6.
    K. Bliokh, A. Bekshaev, F. Nori, Phys. Rev. Lett. 119, 073901 (2017).ADSCrossRefGoogle Scholar
  7. 7.
    J.D. Jackson, Classical Electrodynamics (John Wiley, 1975).Google Scholar
  8. 8.
    S.M. Barnett, Phys. Rev. Lett. 104, 070401 (2010).ADSCrossRefGoogle Scholar
  9. 9.
    K. Bliokh, A. Bekshaev, F. Nori, New J. Phys. 19, 123014 (2017).ADSCrossRefGoogle Scholar
  10. 10.
    K. Bliokh, F. Nori, Phys. Rep. 592, 1 (2015).ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    K. Bliokh, A. Bekshaev, F. Nori, New J. Phys. 16, 093037 (2014).ADSCrossRefGoogle Scholar
  12. 12.
    Ch Kriegler, M.S. Rill, S. Linden, M. Wegener, IEEE J. Sel. Top. Quantum Electron 16, 367 (2010).ADSCrossRefGoogle Scholar
  13. 13.
    C. Cohen-Tannoudji, J. Dupont-Roc, G. Grynberg, Introduction to Quantum Electrodynamics (Wiley, 1997).Google Scholar
  14. 14.
    L.D. Landau, E.M. Lifshitz, Statistical Physics (Pergamon, 1980).Google Scholar
  15. 15.
    R. Weaver, O.I. Lobkis, Phys. Rev. Lett. 87, 134301 (2001).ADSCrossRefGoogle Scholar
  16. 16.
    M. Campillo, A. Paul, Science 299, 547 (2003).ADSCrossRefGoogle Scholar
  17. 17.
    K. Wapenaar, Phys. Rev. Lett. 93, 254301 (2004).ADSCrossRefGoogle Scholar
  18. 18.
    B.A. van Tiggelen, Phys. Rev. Lett. 91, 243904 (2003).ADSCrossRefGoogle Scholar
  19. 19.
    L.D. LandauE.M. Lifshitz, L.P. Piteavskii, Electrodynamics of Continuous Media (Pergamon, 1984), Vol. 8Google Scholar
  20. 20.
    R. Maddox, D.L. Mills, Phys. Rev. B 11, 2229 (1975).ADSCrossRefGoogle Scholar
  21. 21.
    M.F. Bishop, A.A. Maradudin, Phys. Rev. B 14, 3384 (1976).ADSCrossRefGoogle Scholar
  22. 22.
    D.P. Craig, T. Thirunamachandran, Molecular Quantum Electrodynaynmics (Dover, 1984).Google Scholar
  23. 23.
    M. Donaire, B.A. van Tiggelen, G.L.J.A. Rikken, Phys. Rev. Lett. 111, 143602 (2013).ADSCrossRefGoogle Scholar
  24. 24.
    G.L.J.A. Rikken, B.A. van Tiggelen, V. Krstic, G. Wagniere, Chem. Phys. Lett. 403, 298 (2005).ADSCrossRefGoogle Scholar
  25. 25.
    S. Wang, F. Garet, E. Lheurette, M. Astic, J.L. Coutaz, D. Lippens, APL Mater. 1, 032116 (2013).ADSCrossRefGoogle Scholar
  26. 26.
    M. Decker, R. Zhao, C.M. Soukoulis, S. Linden, M. Wegener, Opt. Lett. 35, 1593 (2010).ADSCrossRefGoogle Scholar
  27. 27.
    A. Feigel, Phys. Rev. Lett. 92, 020404 (2004).ADSCrossRefGoogle Scholar
  28. 28.
    G.L.J.A. Rikken, B.A. van Tiggelen, Phys. Rev. Lett. 107, 170401 (2011).ADSCrossRefGoogle Scholar
  29. 29.
    F.A. Pinheiro, B.A. van Tiggelen, J. Opt. Soc. Am. A 20, 99 (2003).ADSCrossRefGoogle Scholar
  30. 30.
    V. Ya Frenkel, Sov. Phys. Usp. 22, 580 (1979).ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Univ. Grenoble Alpes, CNRS, LPMMCGrenobleFrance

Personalised recommendations